Cargando…

Nuclear receptor RXRα binds the precursor of miR-103 to inhibit its maturation

BACKGROUND: The maturation of microRNAs (miRNAs) successively undergoes Drosha, Dicer, and Argonaute ˗mediated processing, however, the intricate regulations of the individual miRNA maturation are largely unknown. Retinoid x receptor alpha (RXRα) belongs to nuclear receptors that regulate gene trans...

Descripción completa

Detalles Bibliográficos
Autores principales: Ye, Xiaohong, Yang, Yun, Yao, Jiayue, Wang, Mo, Liu, Yixin, Xie, Guobin, Zeng, Zhiping, Zhang, Xiao-kun, Zhou, Hu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512521/
https://www.ncbi.nlm.nih.gov/pubmed/37735649
http://dx.doi.org/10.1186/s12915-023-01701-3
Descripción
Sumario:BACKGROUND: The maturation of microRNAs (miRNAs) successively undergoes Drosha, Dicer, and Argonaute ˗mediated processing, however, the intricate regulations of the individual miRNA maturation are largely unknown. Retinoid x receptor alpha (RXRα) belongs to nuclear receptors that regulate gene transcription by binding to DNA elements, however, whether RXRα binds to miRNAs to exert physiological functions is not known. RESULTS: In this work, we found that RXRα directly binds to the precursor of miR-103 (pre-miR-103a-2) via its DNA-binding domain with a preferred binding sequence of AGGUCA. The binding of RXRα inhibits the processing of miR-103 maturation from pre-miR-103a-2. Mechanistically, RXRα prevents the nuclear export of pre-miR-103a-2 for further processing by inhibiting the association of exportin-5 with pre-miR-103a-2. Pathophysiologically, the negative effect of RXRα on miR-103 maturation correlates to the positive effects of RXRα on the expression of Dicer, a target of miR-103, and on the inhibition of breast cancer. CONCLUSIONS: Our findings unravel an unexpected role of transcription factor RXRα in specific miRNA maturation at post-transcriptional level through pre-miRNA binding, and present a mechanistic insight regarding RXRα role in breast cancer progression. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12915-023-01701-3.