Cargando…
The changes of neuroactivity of Tui Na (Chinese massage) at Hegu acupoint on sensorimotor cortex in stroke patients with upper limb motor dysfunction: a fNIRS study
BACKGROUND: Tui Na (Chinese massage) is a relatively simple, inexpensive, and non-invasive intervention, and has been used to treat stroke patients for many years in China. Tui Na acts on specific parts of the body which are called meridians and acupoints to achieve the role of treating diseases. Ye...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512523/ https://www.ncbi.nlm.nih.gov/pubmed/37735652 http://dx.doi.org/10.1186/s12906-023-04143-0 |
Sumario: | BACKGROUND: Tui Na (Chinese massage) is a relatively simple, inexpensive, and non-invasive intervention, and has been used to treat stroke patients for many years in China. Tui Na acts on specific parts of the body which are called meridians and acupoints to achieve the role of treating diseases. Yet the underlying neural mechanism associated with Tui Na is not clear due to the lack of detection methods. OBJECTIVE: Functional near-infrared spectroscopy (fNIRS) was used to explore the changes of sensorimotor cortical neural activity in patients with upper limb motor dysfunction of stroke and healthy control groups during Tui Na Hegu Point. METHODS: Ten patients with unilateral upper limb motor dysfunction after stroke and eight healthy subjects received Tui Na. fNIRS was used to record the hemodynamic data in the sensorimotor cortex and the changes in blood flow were calculated based on oxygenated hemoglobin (Oxy-Hb), the task session involved repetitive Tui Na on Hegu acupoint, using a block design [six cycles: rest (20 seconds); Tui Na (20 seconds); rest (30 seconds)]. The changes in neural activity in sensorimotor cortex could be inferred according to the principle of neurovascular coupling, and the number of activated channels in the bilateral hemisphere was used to calculate the lateralization index. RESULT: 1. For hemodynamic response induced by Hegu acupoint Tui Na, a dominant increase in the contralesional primary sensorimotor cortex during Hegu point Tui Na of the less affected arm in stroke patients was observed, as well as that in healthy controls, while this contralateral pattern was absent during Hegu point Tui Na of the affected arm in stroke patients. 2. Concerning the lateralization index in stroke patients, a significant difference was observed between lateralization index values for the affected arm and the less affected arm (P < 0.05). Wilcoxon tests showed a significant difference between lateralization index values for the affected arm in stroke patients and lateralization index values for the dominant upper limb in healthy controls (P < 0.05), and no significant difference between lateralization index values for the less affected arm in stroke patients and that in healthy controls (P = 0.36). CONCLUSION: The combination of Tui Na and fNIRS has the potential to reflect the functional status of sensorimotor neural circuits. The changes of neuroactivity in the sensorimotor cortex when Tui Na Hegu acupoint indicate that there is a certain correlation between acupoints in traditional Chinese medicine and neural circuits. |
---|