Cargando…

Harnessing acoustic speech parameters to decipher amyloid status in individuals with mild cognitive impairment

Alzheimer's disease (AD) is a neurodegenerative condition characterized by a gradual decline in cognitive functions. Currently, there are no effective treatments for AD, underscoring the importance of identifying individuals in the preclinical stages of mild cognitive impairment (MCI) to enable...

Descripción completa

Detalles Bibliográficos
Autores principales: García-Gutiérrez, Fernando, Marquié, Marta, Muñoz, Nathalia, Alegret, Montserrat, Cano, Amanda, de Rojas, Itziar, García-González, Pablo, Olivé, Clàudia, Puerta, Raquel, Orellana, Adelina, Montrreal, Laura, Pytel, Vanesa, Ricciardi, Mario, Zaldua, Carla, Gabirondo, Peru, Hinzen, Wolfram, Lleonart, Núria, García-Sánchez, Ainhoa, Tárraga, Lluís, Ruiz, Agustín, Boada, Mercè, Valero, Sergi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512723/
https://www.ncbi.nlm.nih.gov/pubmed/37746151
http://dx.doi.org/10.3389/fnins.2023.1221401
_version_ 1785108424428617728
author García-Gutiérrez, Fernando
Marquié, Marta
Muñoz, Nathalia
Alegret, Montserrat
Cano, Amanda
de Rojas, Itziar
García-González, Pablo
Olivé, Clàudia
Puerta, Raquel
Orellana, Adelina
Montrreal, Laura
Pytel, Vanesa
Ricciardi, Mario
Zaldua, Carla
Gabirondo, Peru
Hinzen, Wolfram
Lleonart, Núria
García-Sánchez, Ainhoa
Tárraga, Lluís
Ruiz, Agustín
Boada, Mercè
Valero, Sergi
author_facet García-Gutiérrez, Fernando
Marquié, Marta
Muñoz, Nathalia
Alegret, Montserrat
Cano, Amanda
de Rojas, Itziar
García-González, Pablo
Olivé, Clàudia
Puerta, Raquel
Orellana, Adelina
Montrreal, Laura
Pytel, Vanesa
Ricciardi, Mario
Zaldua, Carla
Gabirondo, Peru
Hinzen, Wolfram
Lleonart, Núria
García-Sánchez, Ainhoa
Tárraga, Lluís
Ruiz, Agustín
Boada, Mercè
Valero, Sergi
author_sort García-Gutiérrez, Fernando
collection PubMed
description Alzheimer's disease (AD) is a neurodegenerative condition characterized by a gradual decline in cognitive functions. Currently, there are no effective treatments for AD, underscoring the importance of identifying individuals in the preclinical stages of mild cognitive impairment (MCI) to enable early interventions. Among the neuropathological events associated with the onset of the disease is the accumulation of amyloid protein in the brain, which correlates with decreased levels of Aβ42 peptide in the cerebrospinal fluid (CSF). Consequently, the development of non-invasive, low-cost, and easy-to-administer proxies for detecting Aβ42 positivity in CSF becomes particularly valuable. A promising approach to achieve this is spontaneous speech analysis, which combined with machine learning (ML) techniques, has proven highly useful in AD. In this study, we examined the relationship between amyloid status in CSF and acoustic features derived from the description of the Cookie Theft picture in MCI patients from a memory clinic. The cohort consisted of fifty-two patients with MCI (mean age 73 years, 65% female, and 57% positive amyloid status). Eighty-eight acoustic parameters were extracted from voice recordings using the extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS), and several ML models were used to classify the amyloid status. Furthermore, interpretability techniques were employed to examine the influence of input variables on the determination of amyloid-positive status. The best model, based on acoustic variables, achieved an accuracy of 75% with an area under the curve (AUC) of 0.79 in the prediction of amyloid status evaluated by bootstrapping and Leave-One-Out Cross Validation (LOOCV), outperforming conventional neuropsychological tests (AUC = 0.66). Our results showed that the automated analysis of voice recordings derived from spontaneous speech tests offers valuable insights into AD biomarkers during the preclinical stages. These findings introduce novel possibilities for the use of digital biomarkers to identify subjects at high risk of developing AD.
format Online
Article
Text
id pubmed-10512723
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-105127232023-09-22 Harnessing acoustic speech parameters to decipher amyloid status in individuals with mild cognitive impairment García-Gutiérrez, Fernando Marquié, Marta Muñoz, Nathalia Alegret, Montserrat Cano, Amanda de Rojas, Itziar García-González, Pablo Olivé, Clàudia Puerta, Raquel Orellana, Adelina Montrreal, Laura Pytel, Vanesa Ricciardi, Mario Zaldua, Carla Gabirondo, Peru Hinzen, Wolfram Lleonart, Núria García-Sánchez, Ainhoa Tárraga, Lluís Ruiz, Agustín Boada, Mercè Valero, Sergi Front Neurosci Neuroscience Alzheimer's disease (AD) is a neurodegenerative condition characterized by a gradual decline in cognitive functions. Currently, there are no effective treatments for AD, underscoring the importance of identifying individuals in the preclinical stages of mild cognitive impairment (MCI) to enable early interventions. Among the neuropathological events associated with the onset of the disease is the accumulation of amyloid protein in the brain, which correlates with decreased levels of Aβ42 peptide in the cerebrospinal fluid (CSF). Consequently, the development of non-invasive, low-cost, and easy-to-administer proxies for detecting Aβ42 positivity in CSF becomes particularly valuable. A promising approach to achieve this is spontaneous speech analysis, which combined with machine learning (ML) techniques, has proven highly useful in AD. In this study, we examined the relationship between amyloid status in CSF and acoustic features derived from the description of the Cookie Theft picture in MCI patients from a memory clinic. The cohort consisted of fifty-two patients with MCI (mean age 73 years, 65% female, and 57% positive amyloid status). Eighty-eight acoustic parameters were extracted from voice recordings using the extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS), and several ML models were used to classify the amyloid status. Furthermore, interpretability techniques were employed to examine the influence of input variables on the determination of amyloid-positive status. The best model, based on acoustic variables, achieved an accuracy of 75% with an area under the curve (AUC) of 0.79 in the prediction of amyloid status evaluated by bootstrapping and Leave-One-Out Cross Validation (LOOCV), outperforming conventional neuropsychological tests (AUC = 0.66). Our results showed that the automated analysis of voice recordings derived from spontaneous speech tests offers valuable insights into AD biomarkers during the preclinical stages. These findings introduce novel possibilities for the use of digital biomarkers to identify subjects at high risk of developing AD. Frontiers Media S.A. 2023-09-07 /pmc/articles/PMC10512723/ /pubmed/37746151 http://dx.doi.org/10.3389/fnins.2023.1221401 Text en Copyright © 2023 García-Gutiérrez, Marquié, Muñoz, Alegret, Cano, de Rojas, García-González, Olivé, Puerta, Orellana, Montrreal, Pytel, Ricciardi, Zaldua, Gabirondo, Hinzen, Lleonart, García-Sánchez, Tárraga, Ruiz, Boada and Valero. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
García-Gutiérrez, Fernando
Marquié, Marta
Muñoz, Nathalia
Alegret, Montserrat
Cano, Amanda
de Rojas, Itziar
García-González, Pablo
Olivé, Clàudia
Puerta, Raquel
Orellana, Adelina
Montrreal, Laura
Pytel, Vanesa
Ricciardi, Mario
Zaldua, Carla
Gabirondo, Peru
Hinzen, Wolfram
Lleonart, Núria
García-Sánchez, Ainhoa
Tárraga, Lluís
Ruiz, Agustín
Boada, Mercè
Valero, Sergi
Harnessing acoustic speech parameters to decipher amyloid status in individuals with mild cognitive impairment
title Harnessing acoustic speech parameters to decipher amyloid status in individuals with mild cognitive impairment
title_full Harnessing acoustic speech parameters to decipher amyloid status in individuals with mild cognitive impairment
title_fullStr Harnessing acoustic speech parameters to decipher amyloid status in individuals with mild cognitive impairment
title_full_unstemmed Harnessing acoustic speech parameters to decipher amyloid status in individuals with mild cognitive impairment
title_short Harnessing acoustic speech parameters to decipher amyloid status in individuals with mild cognitive impairment
title_sort harnessing acoustic speech parameters to decipher amyloid status in individuals with mild cognitive impairment
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512723/
https://www.ncbi.nlm.nih.gov/pubmed/37746151
http://dx.doi.org/10.3389/fnins.2023.1221401
work_keys_str_mv AT garciagutierrezfernando harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT marquiemarta harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT munoznathalia harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT alegretmontserrat harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT canoamanda harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT derojasitziar harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT garciagonzalezpablo harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT oliveclaudia harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT puertaraquel harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT orellanaadelina harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT montrreallaura harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT pytelvanesa harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT ricciardimario harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT zalduacarla harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT gabirondoperu harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT hinzenwolfram harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT lleonartnuria harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT garciasanchezainhoa harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT tarragalluis harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT ruizagustin harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT boadamerce harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT valerosergi harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment