Cargando…
Motor imagery has a priming effect on motor execution in people with multiple sclerosis
Priming is a learning process that refers to behavioral changes caused by previous exposure to a similar stimulus. Motor imagery (MI), which involves the mental rehearsal of action representations in working memory without engaging in actual execution, could be a strategy for priming the motor syste...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512728/ https://www.ncbi.nlm.nih.gov/pubmed/37746058 http://dx.doi.org/10.3389/fnhum.2023.1179789 |
Sumario: | Priming is a learning process that refers to behavioral changes caused by previous exposure to a similar stimulus. Motor imagery (MI), which involves the mental rehearsal of action representations in working memory without engaging in actual execution, could be a strategy for priming the motor system. This study investigates whether MI primes action execution in Multiple Sclerosis (MS). Here, 17 people with MS (PwMS) and 19 healthy subjects (HS), all right-handed and good imaginers, performed as accurately and quickly as possible, with a pencil, actual or mental pointing movements between targets of small (1.0 × 1.0 cm) or large (1.5 × 1.5 cm) size. In actual trials, they completed five pointing cycles between the left and right targets, whereas in mental trials, the first 4 cycles were imagined while the fifth was actually executed. The fifth cycle was introduced to assess the MI priming effect on actual execution. All conditions, presented randomly, were performed with both dominant (i.e., right) and non-dominant arms. Analysis of the duration of the first 4 cycles in both actual and mental trials confirmed previous findings, showing isochrony in HS with both arms and significantly faster mental than actual movements (anisochrony) in PwMS (p < 0.01) [time (s); HS right: actual: 4.23 ± 0.15, mental: 4.36 ± 0.16; left: actual: 4.32 ± 0.15, mental: 4.43 ± 0.18; PwMS right: actual: 5.85 ± 0.16, mental: 5.99 ± 0.21; left: actual: 6.68 ± 0.20, mental: 5.94 ± 0.23]; anisochrony in PwMS was present when the task was performed with the non-dominant arm. Of note, temporal analysis of the fifth actual cycle showed no differences between actual and mental trials for HS with both arms, whereas in PwMS the fifth actual cycle was significantly faster after the four actual cycles for the non-dominant arm (p < 0.05) [time (s); HS right: actual: 1.03 ± 0.04, mental: 1.03 ± 0.03; left: actual: 1.08 ± 0.04, mental: 1.05 ± 0.03; PwMS right: actual: 1.48 ± 0.04, mental: 1.48 ± 0.06; left: actual: 1.66 ± 0.05, mental: 1.48 ± 0.06]. These results seem to suggest that a few mental repetitions of an action might be sufficient to exert a priming effect on the actual execution of the same action in PwMS. This would indicate further investigation of the potential use of MI as a new motor-cognitive tool for MS neurorehabilitation. |
---|