Cargando…

Chemogenetic Perturbation of the Posterior But Not Anterior Cerebellum Reduces Voluntary Ethanol Consumption

The cerebellum communicates with brain areas critically involved in control of goal-directed behaviors including the prefrontal and orbitofrontal cortices and midbrain and basal ganglia structures. In particular, the posterior cerebellum is important for cognitive flexibility and has been implicated...

Descripción completa

Detalles Bibliográficos
Autores principales: Zamudio, Paula A., Gioia, Dominic, Glaser, Christina, Woodward, John J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Society for Neuroscience 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512884/
https://www.ncbi.nlm.nih.gov/pubmed/37679043
http://dx.doi.org/10.1523/ENEURO.0037-23.2023
Descripción
Sumario:The cerebellum communicates with brain areas critically involved in control of goal-directed behaviors including the prefrontal and orbitofrontal cortices and midbrain and basal ganglia structures. In particular, the posterior cerebellum is important for cognitive flexibility and has been implicated in alcohol and drug-related memory. We hypothesized that the cerebellum, through its multiple connections to reward-related brain circuitry, regulates alcohol consumption. To test this, we expressed inhibitory designer receptors exclusively activated by designer drugs (DREADDs) in molecular layer interneurons (MLIs) in anterior (IV–V) or posterior (VI–VIII) cerebellar lobules of male and female mice and activated them during alcohol drinking sessions. In a home-cage drinking paradigm, alcohol consumption was significantly decreased by clozapine-N-oxide (CNO) or deschloroclozapine (DCZ) administration in male mice expressing DREADDs in posterior but not anterior lobules. CNO/DCZ injections did not affect drinking in DREADD expressing female mice or in male mice expressing the control vector. Activation of DREADDs expressed in anterior or posterior lobules had no effect on sucrose or quinine consumption in male or female mice. During operant self-administration sessions, DCZ decreased the number of licks and bouts in male but not female mice expressing DREADDs in posterior lobules with no effect in control vector mice. Performance on an accelerated rotarod was unaffected by chemogenetic manipulation while distance traveled in the open field was decreased by DREADD activation in anterior but not posterior lobules. These results indicate that neuronal activity within the posterior cerebellar cortex plays an important role in the control of alcohol consumption in male mice.