Cargando…

Illuminating the diversity of carotenoids in microalgal eyespots and phototaxis

Photosynthetic organisms biosynthesize various carotenoids, a group of light-absorbing isoprenoid pigments that have key functions in photosynthesis, photoprotection, and phototaxis. Microalgae, in particular, contain diverse carotenoids and carotenoid biosynthetic pathways as a consequence of the v...

Descripción completa

Detalles Bibliográficos
Autores principales: Tamaki, Shun, Shinomura, Tomoko, Mochida, Keiichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512927/
https://www.ncbi.nlm.nih.gov/pubmed/37724547
http://dx.doi.org/10.1080/15592324.2023.2257348
Descripción
Sumario:Photosynthetic organisms biosynthesize various carotenoids, a group of light-absorbing isoprenoid pigments that have key functions in photosynthesis, photoprotection, and phototaxis. Microalgae, in particular, contain diverse carotenoids and carotenoid biosynthetic pathways as a consequence of the various endosymbiotic events in their evolutionary history. Carotenoids such as astaxanthin, diadinoxanthin, and fucoxanthin are unique to algae. In microalgae, carotenoids are concentrated in the eyespot, a pigmented organelle that is important for phototaxis. A wide range of microalgae, including chlorophytes, euglenophytes, ochrophytes, and haptophytes, have an eyespot. In the chlorophyte Chlamydomonas reinhardtii, carotenoid layers in the eyespot reflect light to amplify the photosignal and shield photoreceptors from light, thereby enabling precise phototaxis. Our recent research revealed that, in contrast to the β-carotene-rich eyespot of C. reinhardtii, the euglenophyte Euglena gracilis relies on zeaxanthin for stable eyespot formation and phototaxis. In this review, we highlight recent advancements in the study of eyespot carotenoids and phototaxis in these microalgae, placing special emphasis on the diversity of carotenoid-dependent visual systems among microalgae.