Cargando…

Independent and joint association of cord plasma pantothenate and cysteine levels with autism spectrum disorders and other neurodevelopmental disabilities in children born term and preterm

BACKGROUND: Pantothenate (vitamin B5) is a precursor for coenzyme A (CoA) synthesis, which serves as a cofactor for hundreds of metabolic reactions. Cysteine is an amino acid in the CoA synthesis pathway. To date, research on the combined role of early life pantothenate and cysteine levels in childh...

Descripción completa

Detalles Bibliográficos
Autores principales: Raghavan, Ramkripa, Wang, Guoying, Hong, Xiumei, Pearson, Colleen, Xie, Hehuang, Adams, William G, Augustyn, Marilyn, Wang, Xiaobin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10513014/
https://www.ncbi.nlm.nih.gov/pubmed/37745027
http://dx.doi.org/10.1097/PN9.0000000000000036
Descripción
Sumario:BACKGROUND: Pantothenate (vitamin B5) is a precursor for coenzyme A (CoA) synthesis, which serves as a cofactor for hundreds of metabolic reactions. Cysteine is an amino acid in the CoA synthesis pathway. To date, research on the combined role of early life pantothenate and cysteine levels in childhood neurodevelopmental disabilities is scarce. OBJECTIVE: To study the association between cord pantothenate and cysteine levels and risk of autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD) and other developmental disabilities (DD) in children born term and preterm. METHODS: The study sample (n = 996, 177 born preterm) derived from the Boston Birth Cohort included 416 neurotypical children, 87 ASD, 269 ADHD, and 224 other DD children, who were mutually exclusive. Participants were enrolled at birth and were followed up prospectively (from October 1, 1998, to June 30, 2018) at the Boston Medical Center. Cord blood sample was collected at birth. Plasma pantothenate and cysteine levels were measured using liquid chromatography-tandem mass spectrometry. RESULTS: Higher cord pantothenate (≥50th percentile vs. <50th percentile) was associated with a greater risk of ASD (adjusted odds ratio [aOR]: 1.94, 95% confidence interval [CI]: 1.06, 3.55) and ADHD (aOR: 1.66, 95% CI: 1.14, 2.40), after adjusting for potential confounders. However, cord cysteine alone was not associated with risk of ASD, ADHD, or other DD. When considering the joint association, greater ASD risk was noted when both cord pantothenate and cysteine levels were elevated (≥50th percentile) (aOR: 3.11, 95% CI: 1.24, 7.79), when compared to children with low cord pantothenate (<50th percentile) and high cysteine. Even though preterm and higher pantothenate independently increased the ASD risk, the greatest risk was found in preterm children who also had elevated pantothenate (≥50th percentile), which was true for all three outcomes: ASD (aOR: 5.36, 95% CI: 2.09, 13.75), ADHD (aOR: 3.31, 95% CI: 1.78, 6.16), and other DD (aOR: 3.39, 95% CI: 1.85, 6.24). CONCLUSIONS: In this prospective birth cohort, we showed that higher cord pantothenate individually and in combination with higher cysteine or preterm birth were associated with increased risk of ASD and ADHD. More study is needed to explore this biologically plausible pathway.