Cargando…
Temporal complexity in photoplethysmography and its influence on blood pressure
Objective: The temporal complexity of photoplethysmography (PPG) provides valuable information about blood pressure (BP). In this study, we aim to interpret the stochastic PPG patterns with a model-based simulation, which may help optimize the BP estimation algorithms. Methods: The classic four-elem...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10513039/ https://www.ncbi.nlm.nih.gov/pubmed/37745247 http://dx.doi.org/10.3389/fphys.2023.1187561 |
_version_ | 1785108482786066432 |
---|---|
author | Xing, Xiaoman Huang, Rui Hao, Liling Jiang, Chenyu Dong, Wen-Fei |
author_facet | Xing, Xiaoman Huang, Rui Hao, Liling Jiang, Chenyu Dong, Wen-Fei |
author_sort | Xing, Xiaoman |
collection | PubMed |
description | Objective: The temporal complexity of photoplethysmography (PPG) provides valuable information about blood pressure (BP). In this study, we aim to interpret the stochastic PPG patterns with a model-based simulation, which may help optimize the BP estimation algorithms. Methods: The classic four-element Windkessel model is adapted in this study to incorporate BP-dependent compliance profiles. Simulations are performed to generate PPG responses to pulse and continuous stimuli at various timescales, aiming to mimic sudden or gradual hemodynamic changes observed in real-life scenarios. To quantify the temporal complexity of PPG, we utilize the Higuchi fractal dimension (HFD) and autocorrelation function (ACF). These measures provide insights into the intricate temporal patterns exhibited by PPG. To validate the simulation results, continuous recordings of BP, PPG, and stroke volume from 40 healthy subjects were used. Results: Pulse simulations showed that central vascular compliance variation during a cardiac cycle, peripheral resistance, and cardiac output (CO) collectively contributed to the time delay, amplitude overshoot, and phase shift of PPG responses. Continuous simulations showed that the PPG complexity could be generated by random stimuli, which were subsequently influenced by the autocorrelation patterns of the stimuli. Importantly, the relationship between complexity and hemodynamics as predicted by our model aligned well with the experimental analysis. HFD and ACF had significant contributions to BP, displaying stability even in the presence of high CO fluctuations. In contrast, morphological features exhibited reduced contribution in unstable hemodynamic conditions. Conclusion: Temporal complexity patterns are essential to single-site PPG-based BP estimation. Understanding the physiological implications of these patterns can aid in the development of algorithms with clear interpretability and optimal structures. |
format | Online Article Text |
id | pubmed-10513039 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-105130392023-09-22 Temporal complexity in photoplethysmography and its influence on blood pressure Xing, Xiaoman Huang, Rui Hao, Liling Jiang, Chenyu Dong, Wen-Fei Front Physiol Physiology Objective: The temporal complexity of photoplethysmography (PPG) provides valuable information about blood pressure (BP). In this study, we aim to interpret the stochastic PPG patterns with a model-based simulation, which may help optimize the BP estimation algorithms. Methods: The classic four-element Windkessel model is adapted in this study to incorporate BP-dependent compliance profiles. Simulations are performed to generate PPG responses to pulse and continuous stimuli at various timescales, aiming to mimic sudden or gradual hemodynamic changes observed in real-life scenarios. To quantify the temporal complexity of PPG, we utilize the Higuchi fractal dimension (HFD) and autocorrelation function (ACF). These measures provide insights into the intricate temporal patterns exhibited by PPG. To validate the simulation results, continuous recordings of BP, PPG, and stroke volume from 40 healthy subjects were used. Results: Pulse simulations showed that central vascular compliance variation during a cardiac cycle, peripheral resistance, and cardiac output (CO) collectively contributed to the time delay, amplitude overshoot, and phase shift of PPG responses. Continuous simulations showed that the PPG complexity could be generated by random stimuli, which were subsequently influenced by the autocorrelation patterns of the stimuli. Importantly, the relationship between complexity and hemodynamics as predicted by our model aligned well with the experimental analysis. HFD and ACF had significant contributions to BP, displaying stability even in the presence of high CO fluctuations. In contrast, morphological features exhibited reduced contribution in unstable hemodynamic conditions. Conclusion: Temporal complexity patterns are essential to single-site PPG-based BP estimation. Understanding the physiological implications of these patterns can aid in the development of algorithms with clear interpretability and optimal structures. Frontiers Media S.A. 2023-08-31 /pmc/articles/PMC10513039/ /pubmed/37745247 http://dx.doi.org/10.3389/fphys.2023.1187561 Text en Copyright © 2023 Xing, Huang, Hao, Jiang and Dong. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Physiology Xing, Xiaoman Huang, Rui Hao, Liling Jiang, Chenyu Dong, Wen-Fei Temporal complexity in photoplethysmography and its influence on blood pressure |
title | Temporal complexity in photoplethysmography and its influence on blood pressure |
title_full | Temporal complexity in photoplethysmography and its influence on blood pressure |
title_fullStr | Temporal complexity in photoplethysmography and its influence on blood pressure |
title_full_unstemmed | Temporal complexity in photoplethysmography and its influence on blood pressure |
title_short | Temporal complexity in photoplethysmography and its influence on blood pressure |
title_sort | temporal complexity in photoplethysmography and its influence on blood pressure |
topic | Physiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10513039/ https://www.ncbi.nlm.nih.gov/pubmed/37745247 http://dx.doi.org/10.3389/fphys.2023.1187561 |
work_keys_str_mv | AT xingxiaoman temporalcomplexityinphotoplethysmographyanditsinfluenceonbloodpressure AT huangrui temporalcomplexityinphotoplethysmographyanditsinfluenceonbloodpressure AT haoliling temporalcomplexityinphotoplethysmographyanditsinfluenceonbloodpressure AT jiangchenyu temporalcomplexityinphotoplethysmographyanditsinfluenceonbloodpressure AT dongwenfei temporalcomplexityinphotoplethysmographyanditsinfluenceonbloodpressure |