Cargando…
Non-invasive and accurate risk evaluation of cerebrovascular disease using retinal fundus photo based on deep learning
BACKGROUND: Cerebrovascular disease (CeVD) is a prominent contributor to global mortality and profound disability. Extensive research has unveiled a connection between CeVD and retinal microvascular abnormalities. Nonetheless, manual analysis of fundus images remains a laborious and time-consuming t...
Autores principales: | An, Lin, Qin, Jia, Jiang, Weili, Luo, Penghao, Luo, Xiaoyan, Lai, Yuzheng, Jin, Mei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10513168/ https://www.ncbi.nlm.nih.gov/pubmed/37745652 http://dx.doi.org/10.3389/fneur.2023.1257388 |
Ejemplares similares
-
Anatomical labeling of intracranial arteries with deep learning in patients with cerebrovascular disease
por: Hilbert, Adam, et al.
Publicado: (2022) -
Predicting the severity of white matter lesions among patients with cerebrovascular risk factors based on retinal images and clinical laboratory data: a deep learning study
por: Shu, Liming, et al.
Publicado: (2023) -
Characterization of the retinal vasculature in fundus photos using the PanOptic iExaminer system
por: Hu, Huiling, et al.
Publicado: (2020) -
A deep learning-based framework for retinal fundus image enhancement
por: Lee, Kang Geon, et al.
Publicado: (2023) -
Challenges for Cerebrovascular Disease
por: Hacke, Werner, et al.
Publicado: (2010)