Cargando…
Early Prediction of Massive Transfusion for Patients With Traumatic Hemorrhage: Development of a Multivariable Machine Learning Model
OBJECTIVE: Develop a novel machine learning (ML) model to rapidly identify trauma patients with severe hemorrhage at risk of early mortality. BACKGROUND: The critical administration threshold (CAT, 3 or more units of red blood cells in a 60-minute period) indicates severe hemorrhage and predicts mor...
Autores principales: | Benjamin, Andrew J., Young, Andrew J., Holcomb, John B., Fox, Erin E., Wade, Charles E., Meador, Chris, Cannon, Jeremy W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer Health, Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10513183/ https://www.ncbi.nlm.nih.gov/pubmed/37746616 http://dx.doi.org/10.1097/AS9.0000000000000314 |
Ejemplares similares
-
Massive transfusion and massive transfusion protocol
por: Patil, Vijaya, et al.
Publicado: (2014) -
Utilizing Propensity Score Analyses in Prehospital Blood Product Transfusion Studies: Lessons Learned and Moving Toward Best Practice
por: Greene, Thomas J, et al.
Publicado: (2018) -
Impact of Transfused Citrate on Pathophysiology in Massive Transfusion
por: Schriner, Jacob B., et al.
Publicado: (2023) -
Lactate and fibrinogen as good predictors of massive transfusion in postpartum hemorrhage
por: Okada, Asami, et al.
Publicado: (2019) -
Risk factors for intraoperative massive transfusion in pediatric liver transplantation: a multivariate analysis
por: Jin, Seok-Joon, et al.
Publicado: (2017)