Cargando…
Using sentiment analysis to identify similarities and differences in research topics and medical subject headings (MeSH terms) between Medicine (Baltimore) and the Journal of the Formosan Medical Association (JFMA) in 2020: A bibliometric study
BACKGROUND: Little systematic information has been collected about the nature and types of articles published in 2 journals by identifying the latent topics and analyzing the extracted research themes and sentiments using text mining and machine learning within the 2020 time frame. The goals of this...
Autores principales: | Lin, Ju-Kuo, Chien, Tsair-Wei, Yeh, Yu-Tsen, Ho, Sam Yu-Chieh, Chou, Willy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10513210/ https://www.ncbi.nlm.nih.gov/pubmed/35356912 http://dx.doi.org/10.1097/MD.0000000000029029 |
Ejemplares similares
-
Comparing the similarity and differences in MeSH terms associated with spine-specific journals using the forest plot: A bibliometric analysis
por: Yeh, Chao-Hung, et al.
Publicado: (2022) -
Whether article types of a scholarly journal are different in cited metrics using cluster analysis of MeSH terms to display: A bibliometric analysis
por: Chien, Tsair-Wei, et al.
Publicado: (2019) -
Medical subject headings (MeSH) terms
por: Dhammi, Ish Kumar, et al.
Publicado: (2014) -
Resources for assigning MeSH IDs to Japanese medical terms
por: Tateisi, Yuka
Publicado: (2019) -
MeSH Up: effective MeSH text classification for improved document retrieval
por: Trieschnigg, Dolf, et al.
Publicado: (2009)