Cargando…
An interpretable machine learning framework for diagnosis and prognosis of COVID-19
Coronaviruses have affected the lives of people around the world. Increasingly, studies have indicated that the virus is mutating and becoming more contagious. Hence, the pressing priority is to swiftly and accurately predict patient outcomes. In addition, physicians and patients increasingly need i...
Autores principales: | Fan, Yongxian, Liu, Meng, Sun, Guicong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10513274/ https://www.ncbi.nlm.nih.gov/pubmed/37733828 http://dx.doi.org/10.1371/journal.pone.0291961 |
Ejemplares similares
-
IHCP: interpretable hepatitis C prediction system based on black-box machine learning models
por: Fan, Yongxian, et al.
Publicado: (2023) -
DeepASDPred: a CNN-LSTM-based deep learning method for Autism spectrum disorders risk RNA identification
por: Fan, Yongxian, et al.
Publicado: (2023) -
R.ROSETTA: an interpretable machine learning framework
por: Garbulowski, Mateusz, et al.
Publicado: (2021) -
Clinical prognosis evaluation of COVID-19 patients: An interpretable hybrid machine learning approach
por: Kocadagli, Ozan, et al.
Publicado: (2022) -
Machine learning to analyse omic-data for COVID-19 diagnosis and prognosis
por: Liu, Xuehan, et al.
Publicado: (2023)