Cargando…
Improving Visualization of Intramuscular Perforator Course: Augmented Reality Headsets for DIEP Flap Breast Reconstruction
BACKGROUND: Augmented reality (AR) technology, exemplified by devices such as the Microsoft HoloLens 2, has gained interest for its potential applications in preoperative guidance. This study explores the use of AR technology for perforator identification during deep inferior epigastric artery perfo...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10513288/ https://www.ncbi.nlm.nih.gov/pubmed/37744778 http://dx.doi.org/10.1097/GOX.0000000000005282 |
_version_ | 1785108535485399040 |
---|---|
author | Seth, Ishith Lindhardt, Joakim Jakobsen, Anders Bo Thomsen, Jørn Kiil, Birgitte Jul Rozen, Warren Matthew Kenney, Peter Sinkjaer |
author_facet | Seth, Ishith Lindhardt, Joakim Jakobsen, Anders Bo Thomsen, Jørn Kiil, Birgitte Jul Rozen, Warren Matthew Kenney, Peter Sinkjaer |
author_sort | Seth, Ishith |
collection | PubMed |
description | BACKGROUND: Augmented reality (AR) technology, exemplified by devices such as the Microsoft HoloLens 2, has gained interest for its potential applications in preoperative guidance. This study explores the use of AR technology for perforator identification during deep inferior epigastric artery perforator (DIEP) flap breast reconstruction. METHODS: A case series of five patients where an AR device was used to identify perforators during DIEP flap breast reconstruction is presented. The device was utilized to recognize preoperative perforators and map their extra- and intramuscular routes. Sound and/or color Doppler confirmation was used to verify the findings. RESULTS: In all five cases, the AR device successfully identified preoperative perforators and delineated their extra- and intramuscular routes. AR technology in perioperative visualization of vasculature offers the potential to enhance surgical precision and reduce operative times. By providing an augmented three-dimensional overlay of patients’ vascular structures, AR can facilitate a more comprehensive understanding of individual anatomy, ultimately improving surgical outcomes. CONCLUSIONS: AR technology shows promise in enhancing perforator identification efficiency and deepening understanding of perforator trajectories during preoperative planning. Nonetheless, additional research is needed to establish whether the advantages of AR technology warrant its widespread adoption for perforator identification. |
format | Online Article Text |
id | pubmed-10513288 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Lippincott Williams & Wilkins |
record_format | MEDLINE/PubMed |
spelling | pubmed-105132882023-09-22 Improving Visualization of Intramuscular Perforator Course: Augmented Reality Headsets for DIEP Flap Breast Reconstruction Seth, Ishith Lindhardt, Joakim Jakobsen, Anders Bo Thomsen, Jørn Kiil, Birgitte Jul Rozen, Warren Matthew Kenney, Peter Sinkjaer Plast Reconstr Surg Glob Open Breast BACKGROUND: Augmented reality (AR) technology, exemplified by devices such as the Microsoft HoloLens 2, has gained interest for its potential applications in preoperative guidance. This study explores the use of AR technology for perforator identification during deep inferior epigastric artery perforator (DIEP) flap breast reconstruction. METHODS: A case series of five patients where an AR device was used to identify perforators during DIEP flap breast reconstruction is presented. The device was utilized to recognize preoperative perforators and map their extra- and intramuscular routes. Sound and/or color Doppler confirmation was used to verify the findings. RESULTS: In all five cases, the AR device successfully identified preoperative perforators and delineated their extra- and intramuscular routes. AR technology in perioperative visualization of vasculature offers the potential to enhance surgical precision and reduce operative times. By providing an augmented three-dimensional overlay of patients’ vascular structures, AR can facilitate a more comprehensive understanding of individual anatomy, ultimately improving surgical outcomes. CONCLUSIONS: AR technology shows promise in enhancing perforator identification efficiency and deepening understanding of perforator trajectories during preoperative planning. Nonetheless, additional research is needed to establish whether the advantages of AR technology warrant its widespread adoption for perforator identification. Lippincott Williams & Wilkins 2023-09-21 /pmc/articles/PMC10513288/ /pubmed/37744778 http://dx.doi.org/10.1097/GOX.0000000000005282 Text en Copyright © 2023 The Authors. Published by Wolters Kluwer Health, Inc. on behalf of The American Society of Plastic Surgeons. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) , where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. |
spellingShingle | Breast Seth, Ishith Lindhardt, Joakim Jakobsen, Anders Bo Thomsen, Jørn Kiil, Birgitte Jul Rozen, Warren Matthew Kenney, Peter Sinkjaer Improving Visualization of Intramuscular Perforator Course: Augmented Reality Headsets for DIEP Flap Breast Reconstruction |
title | Improving Visualization of Intramuscular Perforator Course: Augmented Reality Headsets for DIEP Flap Breast Reconstruction |
title_full | Improving Visualization of Intramuscular Perforator Course: Augmented Reality Headsets for DIEP Flap Breast Reconstruction |
title_fullStr | Improving Visualization of Intramuscular Perforator Course: Augmented Reality Headsets for DIEP Flap Breast Reconstruction |
title_full_unstemmed | Improving Visualization of Intramuscular Perforator Course: Augmented Reality Headsets for DIEP Flap Breast Reconstruction |
title_short | Improving Visualization of Intramuscular Perforator Course: Augmented Reality Headsets for DIEP Flap Breast Reconstruction |
title_sort | improving visualization of intramuscular perforator course: augmented reality headsets for diep flap breast reconstruction |
topic | Breast |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10513288/ https://www.ncbi.nlm.nih.gov/pubmed/37744778 http://dx.doi.org/10.1097/GOX.0000000000005282 |
work_keys_str_mv | AT sethishith improvingvisualizationofintramuscularperforatorcourseaugmentedrealityheadsetsfordiepflapbreastreconstruction AT lindhardtjoakim improvingvisualizationofintramuscularperforatorcourseaugmentedrealityheadsetsfordiepflapbreastreconstruction AT jakobsenanders improvingvisualizationofintramuscularperforatorcourseaugmentedrealityheadsetsfordiepflapbreastreconstruction AT bothomsenjørn improvingvisualizationofintramuscularperforatorcourseaugmentedrealityheadsetsfordiepflapbreastreconstruction AT kiilbirgittejul improvingvisualizationofintramuscularperforatorcourseaugmentedrealityheadsetsfordiepflapbreastreconstruction AT rozenwarrenmatthew improvingvisualizationofintramuscularperforatorcourseaugmentedrealityheadsetsfordiepflapbreastreconstruction AT kenneypetersinkjaer improvingvisualizationofintramuscularperforatorcourseaugmentedrealityheadsetsfordiepflapbreastreconstruction |