Cargando…

Production of copper nanoparticle-immobilized chitin nanofibers and their role in plant disease control

Chitin is used in agriculture to improve crop production; however, its use is limited due to difficulties in its handling. A chitin nanofiber (CNF) overcomes this issue and, due to its elicitor activity, has great potential for crop protection. To expand CNF utilization, a copper nanoparticles–based...

Descripción completa

Detalles Bibliográficos
Autores principales: Egusa, Mayumi, Watanabe, Shunki, Li, Hujun, Zewude, Dagmawi Abebe, Ifuku, Shinsuke, Kaminaka, Hironori
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Pesticide Science Society of Japan 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10513960/
https://www.ncbi.nlm.nih.gov/pubmed/37745172
http://dx.doi.org/10.1584/jpestics.D23-001
Descripción
Sumario:Chitin is used in agriculture to improve crop production; however, its use is limited due to difficulties in its handling. A chitin nanofiber (CNF) overcomes this issue and, due to its elicitor activity, has great potential for crop protection. To expand CNF utilization, a copper nanoparticles–based antimicrobic CNF (CuNPs/CNF) was prepared using a chemical reduction method. The formation of CuNPs was confirmed via scanning electron microscopy. Thermogravimetric analysis revealed that the amount of CuNPs on the CNF was dose-dependent on the precursor salt, copper acetate. CuNPs endowed the CNF with strong antimicrobial activity against Alternaria brassicicola and Pectobacterium carotovorum. Moreover, the CuNPs/CNF reduced pathogen infection in cabbage. The antimicrobial activity and disease prevention of the CuNPs/CNF was increased compared to the corresponding CNF or commercial agrochemical Bordeaux treatment. These results indicate that CuNPs conferred antimicrobial activity on the CNF and increased the efficacy of plant disease protection.