Cargando…

Comparative study of sub-second temporal resolution 4D-MRI and 4D-CT for target motion assessment in a phantom model

To develop and investigate the feasibility of sub-second temporal resolution volumetric T1-weighted four-dimensional (4D-) MRI in comparison with 4D-CT for respiratory-correlated motion assessment using an MRI/CT-compatible phantom. Sub-second high temporal resolution (0.5 s) gradient-echo T1-weight...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Tianyuan, Sofue, Keitaro, Shimada, Ryuji, Ishihara, Takeaki, Yada, Ryuichi, Miyamoto, Masanori, Sasaki, Ryohei, Murakami, Takamichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10514030/
https://www.ncbi.nlm.nih.gov/pubmed/37735180
http://dx.doi.org/10.1038/s41598-023-42773-z
Descripción
Sumario:To develop and investigate the feasibility of sub-second temporal resolution volumetric T1-weighted four-dimensional (4D-) MRI in comparison with 4D-CT for respiratory-correlated motion assessment using an MRI/CT-compatible phantom. Sub-second high temporal resolution (0.5 s) gradient-echo T1-weighted 4D-MRI was developed using a volumetric acquisition scheme with compressed sensing. An MRI/CT-compatible motion phantom (simulated liver tumor) with three sinusoidal movements of amplitudes and two respiratory patterns was introduced and imaged with 4D-MRI and 4D-CT to investigate the geometric accuracy of the target movement. The geometric accuracy, including centroid position, volume, similarity index of dice similarity coefficient (DSC), and Hausdorff distance (HD), was systematically evaluated. Proposed 4D-MRI achieved a similar geometric accuracy compared with 4D-CT regarding the centroid position, volume, and similarity index. The observed position differences of the absolute average centroid were within 0.08 cm in 4D-MRI and 0.03 cm in 4D-CT, less than the 1-pixel resolution for each modality. The observed volume difference in 4D-MRI/4D-CT was within 0.73 cm(3) (4.5%)/0.29 cm(3) (2.1%) for a large target and 0.06 cm(3) (11.3%)/0.04 cm(3) (11.6%) for a small target. The observed DSC values for 4D-MRI/4D-CT were at least 0.93/0.95 for the large target and 0.83/0.84 for the small target. The maximum HD values were 0.25 cm/0.31 cm for the large target and 0.21 cm/0.15 cm for the small target. Although 4D-CT potentially exhibit superior numerical accuracy in phantom studies, the proposed high temporal resolution 4D-MRI demonstrates sub-millimetre geometric accuracy comparable to that of 4D-CT. These findings suggest that the 4D-MRI technique is a viable option for characterizing motion and generating phase-dependent internal target volumes within the realm of radiotherapy.