Cargando…
Accelerated discovery of multi-elemental reverse water-gas shift catalysts using extrapolative machine learning approach
Designing novel catalysts is key to solving many energy and environmental challenges. Despite the promise that data science approaches, including machine learning (ML), can accelerate the development of catalysts, truly novel catalysts have rarely been discovered through ML approaches because of one...
Autores principales: | Wang, Gang, Mine, Shinya, Chen, Duotian, Jing, Yuan, Ting, Kah Wei, Yamaguchi, Taichi, Takao, Motoshi, Maeno, Zen, Takigawa, Ichigaku, Matsushita, Koichi, Shimizu, Ken-ichi, Toyao, Takashi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10514199/ https://www.ncbi.nlm.nih.gov/pubmed/37735169 http://dx.doi.org/10.1038/s41467-023-41341-3 |
Ejemplares similares
-
Designing main-group catalysts for low-temperature methane combustion by ozone
por: Yasumura, Shunsaku, et al.
Publicado: (2023) -
Design of Pd-based pseudo-binary alloy catalysts for highly active and selective NO reduction
por: Jeon, Jaewan, et al.
Publicado: (2019) -
A Cu–Pd single-atom alloy catalyst for highly efficient NO reduction
por: Xing, Feilong, et al.
Publicado: (2019) -
Trends in Surface Oxygen Formation Energy in Perovskite
Oxides
por: Hinuma, Yoyo, et al.
Publicado: (2022) -
Correction to “Trends
in Surface Oxygen Formation
Energy in Perovskite Oxides”
por: Hinuma, Yoyo, et al.
Publicado: (2022)