Cargando…

Kapitza-resistance-like exciton dynamics in atomically flat MoSe(2)-WSe(2) lateral heterojunction

Being able to control the neutral excitonic flux is a mandatory step for the development of future room-temperature two-dimensional excitonic devices. Semiconducting Monolayer Transition Metal Dichalcogenides (TMD-ML) with extremely robust and mobile excitons are highly attractive in this regard. Ho...

Descripción completa

Detalles Bibliográficos
Autores principales: Lamsaadi, Hassan, Beret, Dorian, Paradisanos, Ioannis, Renucci, Pierre, Lagarde, Delphine, Marie, Xavier, Urbaszek, Bernhard, Gan, Ziyang, George, Antony, Watanabe, Kenji, Taniguchi, Takashi, Turchanin, Andrey, Lombez, Laurent, Combe, Nicolas, Paillard, Vincent, Poumirol, Jean-Marie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10514293/
https://www.ncbi.nlm.nih.gov/pubmed/37735478
http://dx.doi.org/10.1038/s41467-023-41538-6
_version_ 1785108694016458752
author Lamsaadi, Hassan
Beret, Dorian
Paradisanos, Ioannis
Renucci, Pierre
Lagarde, Delphine
Marie, Xavier
Urbaszek, Bernhard
Gan, Ziyang
George, Antony
Watanabe, Kenji
Taniguchi, Takashi
Turchanin, Andrey
Lombez, Laurent
Combe, Nicolas
Paillard, Vincent
Poumirol, Jean-Marie
author_facet Lamsaadi, Hassan
Beret, Dorian
Paradisanos, Ioannis
Renucci, Pierre
Lagarde, Delphine
Marie, Xavier
Urbaszek, Bernhard
Gan, Ziyang
George, Antony
Watanabe, Kenji
Taniguchi, Takashi
Turchanin, Andrey
Lombez, Laurent
Combe, Nicolas
Paillard, Vincent
Poumirol, Jean-Marie
author_sort Lamsaadi, Hassan
collection PubMed
description Being able to control the neutral excitonic flux is a mandatory step for the development of future room-temperature two-dimensional excitonic devices. Semiconducting Monolayer Transition Metal Dichalcogenides (TMD-ML) with extremely robust and mobile excitons are highly attractive in this regard. However, generating an efficient and controlled exciton transport over long distances is a very challenging task. Here we demonstrate that an atomically sharp TMD-ML lateral heterostructure (MoSe(2)-WSe(2)) transforms the isotropic exciton diffusion into a unidirectional excitonic flow through the junction. Using tip-enhanced photoluminescence spectroscopy (TEPL) and a modified exciton transfer model, we show a discontinuity of the exciton density distribution on each side of the interface. We introduce the concept of exciton Kapitza resistance, by analogy with the interfacial thermal resistance referred to as Kapitza resistance. By comparing different heterostructures with or without top hexagonal boron nitride (hBN) layer, we deduce that the transport properties can be controlled, over distances far greater than the junction width, by the exciton density through near-field engineering and/or laser power density. This work provides a new approach for controlling the neutral exciton flow, which is key toward the conception of excitonic devices.
format Online
Article
Text
id pubmed-10514293
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-105142932023-09-23 Kapitza-resistance-like exciton dynamics in atomically flat MoSe(2)-WSe(2) lateral heterojunction Lamsaadi, Hassan Beret, Dorian Paradisanos, Ioannis Renucci, Pierre Lagarde, Delphine Marie, Xavier Urbaszek, Bernhard Gan, Ziyang George, Antony Watanabe, Kenji Taniguchi, Takashi Turchanin, Andrey Lombez, Laurent Combe, Nicolas Paillard, Vincent Poumirol, Jean-Marie Nat Commun Article Being able to control the neutral excitonic flux is a mandatory step for the development of future room-temperature two-dimensional excitonic devices. Semiconducting Monolayer Transition Metal Dichalcogenides (TMD-ML) with extremely robust and mobile excitons are highly attractive in this regard. However, generating an efficient and controlled exciton transport over long distances is a very challenging task. Here we demonstrate that an atomically sharp TMD-ML lateral heterostructure (MoSe(2)-WSe(2)) transforms the isotropic exciton diffusion into a unidirectional excitonic flow through the junction. Using tip-enhanced photoluminescence spectroscopy (TEPL) and a modified exciton transfer model, we show a discontinuity of the exciton density distribution on each side of the interface. We introduce the concept of exciton Kapitza resistance, by analogy with the interfacial thermal resistance referred to as Kapitza resistance. By comparing different heterostructures with or without top hexagonal boron nitride (hBN) layer, we deduce that the transport properties can be controlled, over distances far greater than the junction width, by the exciton density through near-field engineering and/or laser power density. This work provides a new approach for controlling the neutral exciton flow, which is key toward the conception of excitonic devices. Nature Publishing Group UK 2023-09-21 /pmc/articles/PMC10514293/ /pubmed/37735478 http://dx.doi.org/10.1038/s41467-023-41538-6 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Lamsaadi, Hassan
Beret, Dorian
Paradisanos, Ioannis
Renucci, Pierre
Lagarde, Delphine
Marie, Xavier
Urbaszek, Bernhard
Gan, Ziyang
George, Antony
Watanabe, Kenji
Taniguchi, Takashi
Turchanin, Andrey
Lombez, Laurent
Combe, Nicolas
Paillard, Vincent
Poumirol, Jean-Marie
Kapitza-resistance-like exciton dynamics in atomically flat MoSe(2)-WSe(2) lateral heterojunction
title Kapitza-resistance-like exciton dynamics in atomically flat MoSe(2)-WSe(2) lateral heterojunction
title_full Kapitza-resistance-like exciton dynamics in atomically flat MoSe(2)-WSe(2) lateral heterojunction
title_fullStr Kapitza-resistance-like exciton dynamics in atomically flat MoSe(2)-WSe(2) lateral heterojunction
title_full_unstemmed Kapitza-resistance-like exciton dynamics in atomically flat MoSe(2)-WSe(2) lateral heterojunction
title_short Kapitza-resistance-like exciton dynamics in atomically flat MoSe(2)-WSe(2) lateral heterojunction
title_sort kapitza-resistance-like exciton dynamics in atomically flat mose(2)-wse(2) lateral heterojunction
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10514293/
https://www.ncbi.nlm.nih.gov/pubmed/37735478
http://dx.doi.org/10.1038/s41467-023-41538-6
work_keys_str_mv AT lamsaadihassan kapitzaresistancelikeexcitondynamicsinatomicallyflatmose2wse2lateralheterojunction
AT beretdorian kapitzaresistancelikeexcitondynamicsinatomicallyflatmose2wse2lateralheterojunction
AT paradisanosioannis kapitzaresistancelikeexcitondynamicsinatomicallyflatmose2wse2lateralheterojunction
AT renuccipierre kapitzaresistancelikeexcitondynamicsinatomicallyflatmose2wse2lateralheterojunction
AT lagardedelphine kapitzaresistancelikeexcitondynamicsinatomicallyflatmose2wse2lateralheterojunction
AT mariexavier kapitzaresistancelikeexcitondynamicsinatomicallyflatmose2wse2lateralheterojunction
AT urbaszekbernhard kapitzaresistancelikeexcitondynamicsinatomicallyflatmose2wse2lateralheterojunction
AT ganziyang kapitzaresistancelikeexcitondynamicsinatomicallyflatmose2wse2lateralheterojunction
AT georgeantony kapitzaresistancelikeexcitondynamicsinatomicallyflatmose2wse2lateralheterojunction
AT watanabekenji kapitzaresistancelikeexcitondynamicsinatomicallyflatmose2wse2lateralheterojunction
AT taniguchitakashi kapitzaresistancelikeexcitondynamicsinatomicallyflatmose2wse2lateralheterojunction
AT turchaninandrey kapitzaresistancelikeexcitondynamicsinatomicallyflatmose2wse2lateralheterojunction
AT lombezlaurent kapitzaresistancelikeexcitondynamicsinatomicallyflatmose2wse2lateralheterojunction
AT combenicolas kapitzaresistancelikeexcitondynamicsinatomicallyflatmose2wse2lateralheterojunction
AT paillardvincent kapitzaresistancelikeexcitondynamicsinatomicallyflatmose2wse2lateralheterojunction
AT poumiroljeanmarie kapitzaresistancelikeexcitondynamicsinatomicallyflatmose2wse2lateralheterojunction