Cargando…
A study on feature selection using multi-domain feature extraction for automated k-complex detection
BACKGROUND: K-complex detection plays a significant role in the field of sleep research. However, manual annotation for electroencephalography (EEG) recordings by visual inspection from experts is time-consuming and subjective. Therefore, there is a necessity to implement automatic detection methods...
Autores principales: | Li, Yabing, Dong, Xinglong, Song, Kun, Bai, Xiangyun, Li, Hongye, Karray, Fakhreddine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10514364/ https://www.ncbi.nlm.nih.gov/pubmed/37746152 http://dx.doi.org/10.3389/fnins.2023.1224784 |
Ejemplares similares
-
A RUSBoosted tree method for k-complex detection using tunable Q-factor wavelet transform and multi-domain feature extraction
por: Li, Yabing, et al.
Publicado: (2023) -
Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System
por: Li, Hongqiang, et al.
Publicado: (2016) -
AutoSUM: Automating Feature Extraction and Multi-user Preference Simulation for Entity Summarization
por: Wei, Dongjun, et al.
Publicado: (2020) -
Attention-Based Automated Feature Extraction for Malware Analysis
por: Choi, Sunoh, et al.
Publicado: (2020) -
An automated COVID-19 detection based on fused dynamic exemplar pyramid feature extraction and hybrid feature selection using deep learning
por: Ozyurt, Fatih, et al.
Publicado: (2021)