Cargando…

Automated segmentation of meningioma from contrast-enhanced T1-weighted MRI images in a case series using a marker-controlled watershed segmentation and fuzzy C-means clustering machine learning algorithm

INTRODUCTION AND IMPORTANCE: Accurate segmentation of meningiomas from contrast-enhanced T1-weighted (CE T1-w) magnetic resonance imaging (MRI) is crucial for diagnosis and treatment planning. Manual segmentation is time-consuming and prone to variability. To evaluate an automated segmentation appro...

Descripción completa

Detalles Bibliográficos
Autores principales: Mohammadi, Sana, Ghaderi, Sadegh, Ghaderi, Kayvan, Mohammadi, Mahdi, Pourasl, Masoud Hoseini
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10514425/
https://www.ncbi.nlm.nih.gov/pubmed/37716060
http://dx.doi.org/10.1016/j.ijscr.2023.108818
Descripción
Sumario:INTRODUCTION AND IMPORTANCE: Accurate segmentation of meningiomas from contrast-enhanced T1-weighted (CE T1-w) magnetic resonance imaging (MRI) is crucial for diagnosis and treatment planning. Manual segmentation is time-consuming and prone to variability. To evaluate an automated segmentation approach for meningiomas using marker-controlled watershed segmentation (MCWS) and fuzzy c-means (FCM) algorithms. CASE PRESENTATION AND METHODS: CE T1-w MRI of 3 female patients (aged 59, 44, 67 years) with right frontal meningiomas were analyzed. Images were converted to grayscale and preprocessed with Otsu's thresholding and FCM clustering. MCWS segmentation was performed. Segmentation accuracy was assessed by comparing automated segmentations to manual delineations. CLINICAL DISCUSSION: The approach successfully segmented meningiomas in all cases. Mean sensitivity was 0.8822, indicating accurate identification of tumors. Mean Dice similarity coefficient between Otsu's and FCM1 was 0.6599, suggesting good overlap between segmentation methods. CONCLUSION: The MCWS and FCM approach enables accurate automated segmentation of meningiomas from CE T1-w MRI. With further validation on larger datasets, this could provide an efficient tool to assist in delineating meningioma boundaries for clinical management.