Cargando…
Single-lead arrhythmia detection through machine learning: cross-sectional evaluation of a novel algorithm using real-world data
BACKGROUND: Computer-assisted interpretation of single-lead ECG is the preliminary method for clinicians to flag and further evaluate an arrhythmia of clinical importance for acutely ill patients. Critical scrutiny of novel detection algorithms is lacking, particularly in external real-world data se...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10514635/ https://www.ncbi.nlm.nih.gov/pubmed/37734747 http://dx.doi.org/10.1136/openhrt-2022-002228 |
Sumario: | BACKGROUND: Computer-assisted interpretation of single-lead ECG is the preliminary method for clinicians to flag and further evaluate an arrhythmia of clinical importance for acutely ill patients. Critical scrutiny of novel detection algorithms is lacking, particularly in external real-world data sets. This study’s objective was to evaluate a hybrid machine learning model’s ability to classify eight arrhythmias from a single-lead ECG signal from acutely ill patients. METHODS: This cross-sectional external retrospective evaluation of a previously trained hybrid machine learning model against an ECG reading team in the setting of home hospital care (acute care delivered at home substituting for traditional hospital care) draws from patients admitted at two hospitals in Boston, Massachusetts, USA between 12 June 2017 and 23 November 2019. We calculated classifier statistics for each arrhythmia, all arrhythmias and strips where the model identified normal sinus rhythm. RESULTS: The model analysed 2 680 162 min of single-lead ECG data from 423 patients and identified 691 478 arrhythmias. Patients had a mean age of 70 years (SD, 18), 60% were female and 45% were white. For any arrhythmia, the model had a sensitivity of 98%, a specificity of 100%, an accuracy of 98%, a positive predictive value of 100%, a negative predictive value of 93% and an F(1) Score of 99%. Performance was best for pause (F(1) Score, 99%) and worst for paroxysmal supraventricular tachycardia (F(1) Score, 92%). The model’s false positive rate for any arrhythmia was 0.2%, ranging from 0.4% for pause to 7.2% for paroxysmal supraventricular tachycardia. The false negative rate for any arrhythmia was 1.9%. CONCLUSIONS: A hybrid machine learning model was effective at classifying common cardiac arrhythmias from a single-lead ECG in real-world data. |
---|