Cargando…
Combinatorial Use of Machine Learning and Logistic Regression for Predicting Carotid Plaque Risk Among 5.4 Million Adults With Fatty Liver Disease Receiving Health Check-Ups: Population-Based Cross-Sectional Study
BACKGROUND: Carotid plaque can progress into stroke, myocardial infarction, etc, which are major global causes of death. Evidence shows a significant increase in carotid plaque incidence among patients with fatty liver disease. However, unlike the high detection rate of fatty liver disease, screenin...
Autores principales: | Deng, Yuhan, Ma, Yuan, Fu, Jingzhu, Wang, Xiaona, Yu, Canqing, Lv, Jun, Man, Sailimai, Wang, Bo, Li, Liming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10514774/ https://www.ncbi.nlm.nih.gov/pubmed/37676713 http://dx.doi.org/10.2196/47095 |
Ejemplares similares
-
A dynamic machine learning model for prediction of NAFLD in a health checkup population: A longitudinal study
por: Deng, Yuhan, et al.
Publicado: (2023) -
Plaque characteristics and biomarkers predicting regression and progression of carotid atherosclerosis
por: Khan, Faisel, et al.
Publicado: (2022) -
Applied logistic regression
por: Hosmer, David W, et al.
Publicado: (2013) -
Applied logistic regression /
por: Hosmer, David W.
Publicado: (2000) -
Logistic regression : a self-learning text /
por: Kleinbaum, David G.
Publicado: (2002)