Cargando…
Deep Learning-Based Versus Iterative Image Reconstruction for Unenhanced Brain CT: A Quantitative Comparison of Image Quality
This exploratory retrospective study aims to quantitatively compare the image quality of unenhanced brain computed tomography (CT) reconstructed with an iterative (AIDR-3D) and a deep learning-based (AiCE) reconstruction algorithm. After a preliminary phantom study, AIDR-3D and AiCE reconstructions...
Autores principales: | Cozzi, Andrea, Cè, Maurizio, De Padova, Giuseppe, Libri, Dario, Caldarelli, Nazarena, Zucconi, Fabio, Oliva, Giancarlo, Cellina, Michaela |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10514884/ https://www.ncbi.nlm.nih.gov/pubmed/37736983 http://dx.doi.org/10.3390/tomography9050130 |
Ejemplares similares
-
Can use of adaptive statistical iterative reconstruction reduce radiation dose in unenhanced head CT? An analysis of qualitative and quantitative image quality
por: Østerås, Bjørn Helge, et al.
Publicado: (2016) -
Low-Dose Unenhanced Computed Tomography with Iterative Reconstruction for Diagnosis of Ureter Stones
por: Chi, Byung Hoon, et al.
Publicado: (2018) -
Unenhanced abdominal low-dose CT reconstructed with deep learning-based image reconstruction: image quality and anatomical structure depiction
por: Kaga, Tetsuro, et al.
Publicado: (2022) -
Computed tomography in traumatic orbital emergencies: a pictorial essay—imaging findings, tips, and report flowchart
por: Cellina, Michaela, et al.
Publicado: (2022) -
Quality evaluation of image‐based iterative reconstruction for CT: Comparison with hybrid iterative reconstruction
por: Kawashima, Hiroki, et al.
Publicado: (2019)