Cargando…
TaSPL17s act redundantly with TaSPL14s to control spike development and their elite haplotypes may improve wheat grain yield
Wheat is a staple crop for the world’s population, and there is constant pressure to improve grain yield, which is largely determined by plant architecture. SQUAMOSA promotor-binding protein-like (SPL) genes have been widely studied in rice, including their effects on plant architecture, grain devel...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10514913/ https://www.ncbi.nlm.nih.gov/pubmed/37745997 http://dx.doi.org/10.3389/fpls.2023.1229827 |
_version_ | 1785108829547003904 |
---|---|
author | Chen, Hao Zhang, Xing Xu, Shuhao Song, Chengxiang Mao, Hailiang |
author_facet | Chen, Hao Zhang, Xing Xu, Shuhao Song, Chengxiang Mao, Hailiang |
author_sort | Chen, Hao |
collection | PubMed |
description | Wheat is a staple crop for the world’s population, and there is constant pressure to improve grain yield, which is largely determined by plant architecture. SQUAMOSA promotor-binding protein-like (SPL) genes have been widely studied in rice, including their effects on plant architecture, grain development, and grain yield. However, the function of SPL homologous genes in wheat has not been well investigated. In this study, TaSPL14s and TaSPL17s, wheat’s closest orthologous of OsSPL14, were functionally investigated using gene-editing assays, revealing that these genes redundantly influence plant height, tiller number, spike length, and thousand-grain weight (TGW). Bract outgrowth was frequently observed in the hexa-mutant, occasionally in the quintuple mutant but never in the wild type. Transcriptome analysis revealed that the expression of many spike development-associated genes was altered in taspl14taspl17 hexa-mutants compared to that in the wild type. In addition, we analyzed the sequence polymorphisms of TaSPL14s and TaSPL17s among wheat germplasm and found superior haplotypes of TaSPL17-A and TaSPL17-D with significantly higher TGW, which had been positively selected during wheat breeding. Accordingly, dCAPS and KASP markers were developed for TaSPL17-A and TaSPL17-D, respectively, providing a novel insight for molecular marker-assisted breeding in wheat. Overall, our results highlight the role of TaSPLs in regulating plant architecture and their potential application for wheat grain yield improvement through molecular breeding. |
format | Online Article Text |
id | pubmed-10514913 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-105149132023-09-23 TaSPL17s act redundantly with TaSPL14s to control spike development and their elite haplotypes may improve wheat grain yield Chen, Hao Zhang, Xing Xu, Shuhao Song, Chengxiang Mao, Hailiang Front Plant Sci Plant Science Wheat is a staple crop for the world’s population, and there is constant pressure to improve grain yield, which is largely determined by plant architecture. SQUAMOSA promotor-binding protein-like (SPL) genes have been widely studied in rice, including their effects on plant architecture, grain development, and grain yield. However, the function of SPL homologous genes in wheat has not been well investigated. In this study, TaSPL14s and TaSPL17s, wheat’s closest orthologous of OsSPL14, were functionally investigated using gene-editing assays, revealing that these genes redundantly influence plant height, tiller number, spike length, and thousand-grain weight (TGW). Bract outgrowth was frequently observed in the hexa-mutant, occasionally in the quintuple mutant but never in the wild type. Transcriptome analysis revealed that the expression of many spike development-associated genes was altered in taspl14taspl17 hexa-mutants compared to that in the wild type. In addition, we analyzed the sequence polymorphisms of TaSPL14s and TaSPL17s among wheat germplasm and found superior haplotypes of TaSPL17-A and TaSPL17-D with significantly higher TGW, which had been positively selected during wheat breeding. Accordingly, dCAPS and KASP markers were developed for TaSPL17-A and TaSPL17-D, respectively, providing a novel insight for molecular marker-assisted breeding in wheat. Overall, our results highlight the role of TaSPLs in regulating plant architecture and their potential application for wheat grain yield improvement through molecular breeding. Frontiers Media S.A. 2023-09-08 /pmc/articles/PMC10514913/ /pubmed/37745997 http://dx.doi.org/10.3389/fpls.2023.1229827 Text en Copyright © 2023 Chen, Zhang, Xu, Song and Mao https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Chen, Hao Zhang, Xing Xu, Shuhao Song, Chengxiang Mao, Hailiang TaSPL17s act redundantly with TaSPL14s to control spike development and their elite haplotypes may improve wheat grain yield |
title |
TaSPL17s act redundantly with TaSPL14s to control spike development and their elite haplotypes may improve wheat grain yield |
title_full |
TaSPL17s act redundantly with TaSPL14s to control spike development and their elite haplotypes may improve wheat grain yield |
title_fullStr |
TaSPL17s act redundantly with TaSPL14s to control spike development and their elite haplotypes may improve wheat grain yield |
title_full_unstemmed |
TaSPL17s act redundantly with TaSPL14s to control spike development and their elite haplotypes may improve wheat grain yield |
title_short |
TaSPL17s act redundantly with TaSPL14s to control spike development and their elite haplotypes may improve wheat grain yield |
title_sort | taspl17s act redundantly with taspl14s to control spike development and their elite haplotypes may improve wheat grain yield |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10514913/ https://www.ncbi.nlm.nih.gov/pubmed/37745997 http://dx.doi.org/10.3389/fpls.2023.1229827 |
work_keys_str_mv | AT chenhao taspl17sactredundantlywithtaspl14stocontrolspikedevelopmentandtheirelitehaplotypesmayimprovewheatgrainyield AT zhangxing taspl17sactredundantlywithtaspl14stocontrolspikedevelopmentandtheirelitehaplotypesmayimprovewheatgrainyield AT xushuhao taspl17sactredundantlywithtaspl14stocontrolspikedevelopmentandtheirelitehaplotypesmayimprovewheatgrainyield AT songchengxiang taspl17sactredundantlywithtaspl14stocontrolspikedevelopmentandtheirelitehaplotypesmayimprovewheatgrainyield AT maohailiang taspl17sactredundantlywithtaspl14stocontrolspikedevelopmentandtheirelitehaplotypesmayimprovewheatgrainyield |