Cargando…
Harmonization of supervised machine learning practices for efficient source attribution of Listeria monocytogenes based on genomic data
BACKGROUND: Genomic data-based machine learning tools are promising for real-time surveillance activities performing source attribution of foodborne bacteria such as Listeria monocytogenes. Given the heterogeneity of machine learning practices, our aim was to identify those influencing the source pr...
Autores principales: | Castelli, Pierluigi, De Ruvo, Andrea, Bucciacchio, Andrea, D’Alterio, Nicola, Cammà, Cesare, Di Pasquale, Adriano, Radomski, Nicolas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515079/ https://www.ncbi.nlm.nih.gov/pubmed/37736708 http://dx.doi.org/10.1186/s12864-023-09667-w |
Ejemplares similares
-
In vitro and in silico parameters for precise cgMLST typing of Listeria monocytogenes
por: Palma, Federica, et al.
Publicado: (2022) -
A Machine Learning Model for Food Source Attribution of Listeria monocytogenes
por: Tanui, Collins K., et al.
Publicado: (2022) -
Listeria monocytogenes in ready to eat meat products from Zambia: phenotypical and genomic characterization of isolates
por: Centorotola, Gabriella, et al.
Publicado: (2023) -
Challenge test studies on Listeria monocytogenes in ready‐to‐eat iceberg lettuce
por: Tucci, Patrizia, et al.
Publicado: (2019) -
Stress Adaptation Responses of a Listeria monocytogenes 1/2a Strain via Proteome Profiling
por: D’Onofrio, Federica, et al.
Publicado: (2023)