Cargando…
Ternary Mixture of Pentanamide in Solvent Analogy with Halogenated Phenol: Experimental, Theoretical, and In Silico Biological Studies
[Image: see text] This research describes the preparation of mixtures of new halogen-substituted phenol derivatives and their effects due to linkages with a fatty amide (pentanamide). The molecules were optimized using DFT, and the vibrational and electronic analysis was done subsequently. The energ...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515181/ https://www.ncbi.nlm.nih.gov/pubmed/37744853 http://dx.doi.org/10.1021/acsomega.3c04710 |
_version_ | 1785108888209588224 |
---|---|
author | Basha, A. Aathif Ali Khan, F. Liakath Kubaib, Attar Imran, Predhanekar Mohamed Nebbache, Nadia |
author_facet | Basha, A. Aathif Ali Khan, F. Liakath Kubaib, Attar Imran, Predhanekar Mohamed Nebbache, Nadia |
author_sort | Basha, A. Aathif |
collection | PubMed |
description | [Image: see text] This research describes the preparation of mixtures of new halogen-substituted phenol derivatives and their effects due to linkages with a fatty amide (pentanamide). The molecules were optimized using DFT, and the vibrational and electronic analysis was done subsequently. The energies of frontier molecular orbitals (FMOs) were used to estimate the global chemical reactivity parameters as we suggest that hydrogen-bonded networks may have contributed to the stability and reactivity of the compound. In addition to the experimental investigation, dielectric parameters were calculated. Fukui functions were analyzed to study the chemical reactivity. To get insight into interactions of σ → π* orbitals, natural bond orbital calculations were done. Additionally, surface analysis of the MEP and Hirshfeld charges were performed at the equivalent DFT levels. The research also indicated that both (interaction region indicator) IRI and (electron delocalize range) EDR would proficiently identify chemical-bonding and weak interaction regions, providing a significant advantage in exploring diverse chemical systems and reactions. This indicated that compounds could diffuse through noncovalent interactions, including intramolecular hydrogen bonding. Dielectric relaxation studies taken at five distinct molar ratios identified significant dielectric properties such as ε′, ε″, ε(0), and ε(∞). The PA with FP, CP, BP, and IP molecules has potential antiviral and antioxidant benefits for carbonic anhydrase, with favorable drug-like features and diverse biological benefits. Pharmacological effects were forecasted using the PASS server, and these molecules exhibited favorable pharmacokinetic properties. |
format | Online Article Text |
id | pubmed-10515181 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-105151812023-09-23 Ternary Mixture of Pentanamide in Solvent Analogy with Halogenated Phenol: Experimental, Theoretical, and In Silico Biological Studies Basha, A. Aathif Ali Khan, F. Liakath Kubaib, Attar Imran, Predhanekar Mohamed Nebbache, Nadia ACS Omega [Image: see text] This research describes the preparation of mixtures of new halogen-substituted phenol derivatives and their effects due to linkages with a fatty amide (pentanamide). The molecules were optimized using DFT, and the vibrational and electronic analysis was done subsequently. The energies of frontier molecular orbitals (FMOs) were used to estimate the global chemical reactivity parameters as we suggest that hydrogen-bonded networks may have contributed to the stability and reactivity of the compound. In addition to the experimental investigation, dielectric parameters were calculated. Fukui functions were analyzed to study the chemical reactivity. To get insight into interactions of σ → π* orbitals, natural bond orbital calculations were done. Additionally, surface analysis of the MEP and Hirshfeld charges were performed at the equivalent DFT levels. The research also indicated that both (interaction region indicator) IRI and (electron delocalize range) EDR would proficiently identify chemical-bonding and weak interaction regions, providing a significant advantage in exploring diverse chemical systems and reactions. This indicated that compounds could diffuse through noncovalent interactions, including intramolecular hydrogen bonding. Dielectric relaxation studies taken at five distinct molar ratios identified significant dielectric properties such as ε′, ε″, ε(0), and ε(∞). The PA with FP, CP, BP, and IP molecules has potential antiviral and antioxidant benefits for carbonic anhydrase, with favorable drug-like features and diverse biological benefits. Pharmacological effects were forecasted using the PASS server, and these molecules exhibited favorable pharmacokinetic properties. American Chemical Society 2023-09-07 /pmc/articles/PMC10515181/ /pubmed/37744853 http://dx.doi.org/10.1021/acsomega.3c04710 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Basha, A. Aathif Ali Khan, F. Liakath Kubaib, Attar Imran, Predhanekar Mohamed Nebbache, Nadia Ternary Mixture of Pentanamide in Solvent Analogy with Halogenated Phenol: Experimental, Theoretical, and In Silico Biological Studies |
title | Ternary Mixture
of Pentanamide in Solvent Analogy
with Halogenated Phenol: Experimental, Theoretical, and In
Silico Biological Studies |
title_full | Ternary Mixture
of Pentanamide in Solvent Analogy
with Halogenated Phenol: Experimental, Theoretical, and In
Silico Biological Studies |
title_fullStr | Ternary Mixture
of Pentanamide in Solvent Analogy
with Halogenated Phenol: Experimental, Theoretical, and In
Silico Biological Studies |
title_full_unstemmed | Ternary Mixture
of Pentanamide in Solvent Analogy
with Halogenated Phenol: Experimental, Theoretical, and In
Silico Biological Studies |
title_short | Ternary Mixture
of Pentanamide in Solvent Analogy
with Halogenated Phenol: Experimental, Theoretical, and In
Silico Biological Studies |
title_sort | ternary mixture
of pentanamide in solvent analogy
with halogenated phenol: experimental, theoretical, and in
silico biological studies |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515181/ https://www.ncbi.nlm.nih.gov/pubmed/37744853 http://dx.doi.org/10.1021/acsomega.3c04710 |
work_keys_str_mv | AT bashaaaathif ternarymixtureofpentanamideinsolventanalogywithhalogenatedphenolexperimentaltheoreticalandinsilicobiologicalstudies AT alikhanfliakath ternarymixtureofpentanamideinsolventanalogywithhalogenatedphenolexperimentaltheoreticalandinsilicobiologicalstudies AT kubaibattar ternarymixtureofpentanamideinsolventanalogywithhalogenatedphenolexperimentaltheoreticalandinsilicobiologicalstudies AT imranpredhanekarmohamed ternarymixtureofpentanamideinsolventanalogywithhalogenatedphenolexperimentaltheoreticalandinsilicobiologicalstudies AT nebbachenadia ternarymixtureofpentanamideinsolventanalogywithhalogenatedphenolexperimentaltheoreticalandinsilicobiologicalstudies |