Cargando…
HPLC/UV approach method for the first simultaneous estimation of molnupiravir and ertapenem as a binary mixture in human plasma and dosage form as a regimen for COVID-19 treatments
COVID-19 is a serious virus that can have a lot of effects, one of which is a secondary bacterial infection that can be more life-threatening and even lethal than the initial viral infection. Hence a fast and sensitive HPLC/UV method was developed and validated for the first estimation of a binary m...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515236/ https://www.ncbi.nlm.nih.gov/pubmed/37735684 http://dx.doi.org/10.1186/s13065-023-01024-y |
Sumario: | COVID-19 is a serious virus that can have a lot of effects, one of which is a secondary bacterial infection that can be more life-threatening and even lethal than the initial viral infection. Hence a fast and sensitive HPLC/UV method was developed and validated for the first estimation of a binary mixture of molnupiravir (MOL) and ertapenem (ERT) as a co-administrated medicine for the management of COVID-19 in pharmaceutical dosage forms, and human plasma samples. The drug combination was separated within 5 min via RP-ODS column using isocratic elution with a mobile phase of 0.05 M phosphate buffer (pH 3.5): acetonitrile with a 76: 24% ratio v/v. The presented method provided a linear response ranging from 0.03 to 17.0 and 0.05–20 µg mL(−1) with LOD values of 0.009 and 0.008 µg mL(−1) for MOL and ERT respectively. The good separation and high sensitivity of the HPLC method provide the determination of the cited drugs in human plasma without matrix interference with a percent of recovery ranging from 94.97 ± 2.05 to 98.44 ± 1.92. Based on the results, this method could be utilized to monitor cited drugs in quality control and therapeutic laboratories. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13065-023-01024-y. |
---|