Cargando…
Optimization, Kinetics, and Isotherm Studies of Methyl Thioninium Chloride Removal from Simulated Solutions Using Chitosan Derivatives
[Image: see text] Methylene blue (MB) dye or methyl thioninium chloride is one of the hazardous cationic dyes that are discharged into the textile effluent causing a highly negative environmental impact. The present work targets the investigation of the adsorption performance of some chitosan-modifi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515362/ https://www.ncbi.nlm.nih.gov/pubmed/37744862 http://dx.doi.org/10.1021/acsomega.3c03735 |
Sumario: | [Image: see text] Methylene blue (MB) dye or methyl thioninium chloride is one of the hazardous cationic dyes that are discharged into the textile effluent causing a highly negative environmental impact. The present work targets the investigation of the adsorption performance of some chitosan-modified products toward the MB dye from simulated solutions. The claimed chitosan derivatives were prepared, characterized, and applied for the removal of lead and copper cations from an aqueous medium in a previous work. These include: N,O-carboxymethyl chitosan (N,O-CM/Cs), chitosan grafted with glutaraldehyde (Cs/GA), chitosan cross-linked with GA/epichlorohydrin (Cs/GA/ECH), and chitosan cross-linked with glutaraldehyde/methylene bis(acrylamide) (Cs/GA/MBA). The modified chitosan derivatives in this study displayed outstanding mechanical qualities, exceptional reusability, and a significant amount of adsorption capacity. The ability of prepared Cs derivatives to eradicate MB was as follows: N,O-CM/Cs (95.1 mg/g) < Cs/GA (120.1 mg/g) < Cs/GA/ECH (220.1 mg/g) < Cs/GA/MBA (270.0 mg/g). The swelling performance of the prepared sorbents was verified under different experimental conditions, and the data revealed that the maximum swelling was attained at pH = 9, temperature 55 °C, and after 24 h. The produced Cs derivatives showed exceptional reusability by maintaining higher adsorption effectiveness throughout five cycles. The MB dye was adsorbed onto the modified derivatives according to pseudo-second-order kinetics and the Langmuir model. Moreover, the adsorption process was monitored via atomic force microscopy to verify the differences between the dye-free and dye-loaded adsorbents. |
---|