Cargando…
Unsupervised knowledge-transfer for learned image reconstruction
Deep learning-based image reconstruction approaches have demonstrated impressive empirical performance in many imaging modalities. These approaches usually require a large amount of high-quality paired training data, which is often not available in medical imaging. To circumvent this issue we develo...
Autores principales: | Barbano, Riccardo, Kereta, Željko, Hauptmann, Andreas, Arridge, Simon R, Jin, Bangti |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOP Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515400/ https://www.ncbi.nlm.nih.gov/pubmed/37745782 http://dx.doi.org/10.1088/1361-6420/ac8a91 |
Ejemplares similares
-
Real‐time cardiovascular MR with spatio‐temporal artifact suppression using deep learning–proof of concept in congenital heart disease
por: Hauptmann, Andreas, et al.
Publicado: (2018) -
Networks for Nonlinear Diffusion Problems in Imaging
por: Arridge, S., et al.
Publicado: (2019) -
Enhancement of instrumented ultrasonic tracking images using deep learning
por: Maneas, Efthymios, et al.
Publicado: (2022) -
Unsupervised Learning in Detection of Gene Transfer
por: Hamel, L., et al.
Publicado: (2008) -
An Unsupervised Transfer Learning Framework for Visible-Thermal Pedestrian Detection
por: Lyu, Chengjin, et al.
Publicado: (2022)