Cargando…

The Role of Lattice Defects on the Optical Properties of TiO(2) Nanotube Arrays for Synergistic Water Splitting

[Image: see text] In this study, we report a facile one-step chemical method to synthesize reduced titanium dioxide (TiO(2)) nanotube arrays (NTAs) with point defects. Treatment with NaBH(4) introduces oxygen vacancies (OVs) in the TiO(2) lattice. Chemical analysis and optical studies indicate that...

Descripción completa

Detalles Bibliográficos
Autores principales: Machreki, Manel, Chouki, Takwa, Tyuliev, Georgi, Fanetti, Mattia, Valant, Matjaž, Arčon, Denis, Pregelj, Matej, Emin, Saim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515401/
https://www.ncbi.nlm.nih.gov/pubmed/37744782
http://dx.doi.org/10.1021/acsomega.3c00965
_version_ 1785108939887607808
author Machreki, Manel
Chouki, Takwa
Tyuliev, Georgi
Fanetti, Mattia
Valant, Matjaž
Arčon, Denis
Pregelj, Matej
Emin, Saim
author_facet Machreki, Manel
Chouki, Takwa
Tyuliev, Georgi
Fanetti, Mattia
Valant, Matjaž
Arčon, Denis
Pregelj, Matej
Emin, Saim
author_sort Machreki, Manel
collection PubMed
description [Image: see text] In this study, we report a facile one-step chemical method to synthesize reduced titanium dioxide (TiO(2)) nanotube arrays (NTAs) with point defects. Treatment with NaBH(4) introduces oxygen vacancies (OVs) in the TiO(2) lattice. Chemical analysis and optical studies indicate that the OV density can be significantly increased by changing reduction time treatment, leading to higher optical transmission of the TiO(2) NTAs and retarded carrier recombination in the photoelectrochemical process. A cathodoluminescence (CL) study of reduced TiO(2) (TiO(2–x)) NTAs revealed that OVs contribute significantly to the emission bands in the visible range. It was found that the TiO(2) NTAs reduced for a longer duration exhibited a higher concentration of OVs. A typical CL spectrum of TiO(2) was deconvoluted to four Gaussian components, assigned to F, F(+), and Ti(3+) centers. X-ray photoelectron spectroscopy measurements were used to support the change in the surface chemical bonding and electronic valence band position in TiO(2). Electron paramagnetic resonance spectra confirmed the presence of OVs in the TiO(2–x) sample. The prepared TiO(2–x) NTAs show an enhanced photocurrent for water splitting due to pronounced light absorption in the visible region, enhanced electrical conductivity, and improved charge transportation.
format Online
Article
Text
id pubmed-10515401
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-105154012023-09-23 The Role of Lattice Defects on the Optical Properties of TiO(2) Nanotube Arrays for Synergistic Water Splitting Machreki, Manel Chouki, Takwa Tyuliev, Georgi Fanetti, Mattia Valant, Matjaž Arčon, Denis Pregelj, Matej Emin, Saim ACS Omega [Image: see text] In this study, we report a facile one-step chemical method to synthesize reduced titanium dioxide (TiO(2)) nanotube arrays (NTAs) with point defects. Treatment with NaBH(4) introduces oxygen vacancies (OVs) in the TiO(2) lattice. Chemical analysis and optical studies indicate that the OV density can be significantly increased by changing reduction time treatment, leading to higher optical transmission of the TiO(2) NTAs and retarded carrier recombination in the photoelectrochemical process. A cathodoluminescence (CL) study of reduced TiO(2) (TiO(2–x)) NTAs revealed that OVs contribute significantly to the emission bands in the visible range. It was found that the TiO(2) NTAs reduced for a longer duration exhibited a higher concentration of OVs. A typical CL spectrum of TiO(2) was deconvoluted to four Gaussian components, assigned to F, F(+), and Ti(3+) centers. X-ray photoelectron spectroscopy measurements were used to support the change in the surface chemical bonding and electronic valence band position in TiO(2). Electron paramagnetic resonance spectra confirmed the presence of OVs in the TiO(2–x) sample. The prepared TiO(2–x) NTAs show an enhanced photocurrent for water splitting due to pronounced light absorption in the visible region, enhanced electrical conductivity, and improved charge transportation. American Chemical Society 2023-09-01 /pmc/articles/PMC10515401/ /pubmed/37744782 http://dx.doi.org/10.1021/acsomega.3c00965 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Machreki, Manel
Chouki, Takwa
Tyuliev, Georgi
Fanetti, Mattia
Valant, Matjaž
Arčon, Denis
Pregelj, Matej
Emin, Saim
The Role of Lattice Defects on the Optical Properties of TiO(2) Nanotube Arrays for Synergistic Water Splitting
title The Role of Lattice Defects on the Optical Properties of TiO(2) Nanotube Arrays for Synergistic Water Splitting
title_full The Role of Lattice Defects on the Optical Properties of TiO(2) Nanotube Arrays for Synergistic Water Splitting
title_fullStr The Role of Lattice Defects on the Optical Properties of TiO(2) Nanotube Arrays for Synergistic Water Splitting
title_full_unstemmed The Role of Lattice Defects on the Optical Properties of TiO(2) Nanotube Arrays for Synergistic Water Splitting
title_short The Role of Lattice Defects on the Optical Properties of TiO(2) Nanotube Arrays for Synergistic Water Splitting
title_sort role of lattice defects on the optical properties of tio(2) nanotube arrays for synergistic water splitting
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515401/
https://www.ncbi.nlm.nih.gov/pubmed/37744782
http://dx.doi.org/10.1021/acsomega.3c00965
work_keys_str_mv AT machrekimanel theroleoflatticedefectsontheopticalpropertiesoftio2nanotubearraysforsynergisticwatersplitting
AT choukitakwa theroleoflatticedefectsontheopticalpropertiesoftio2nanotubearraysforsynergisticwatersplitting
AT tyulievgeorgi theroleoflatticedefectsontheopticalpropertiesoftio2nanotubearraysforsynergisticwatersplitting
AT fanettimattia theroleoflatticedefectsontheopticalpropertiesoftio2nanotubearraysforsynergisticwatersplitting
AT valantmatjaz theroleoflatticedefectsontheopticalpropertiesoftio2nanotubearraysforsynergisticwatersplitting
AT arcondenis theroleoflatticedefectsontheopticalpropertiesoftio2nanotubearraysforsynergisticwatersplitting
AT pregeljmatej theroleoflatticedefectsontheopticalpropertiesoftio2nanotubearraysforsynergisticwatersplitting
AT eminsaim theroleoflatticedefectsontheopticalpropertiesoftio2nanotubearraysforsynergisticwatersplitting
AT machrekimanel roleoflatticedefectsontheopticalpropertiesoftio2nanotubearraysforsynergisticwatersplitting
AT choukitakwa roleoflatticedefectsontheopticalpropertiesoftio2nanotubearraysforsynergisticwatersplitting
AT tyulievgeorgi roleoflatticedefectsontheopticalpropertiesoftio2nanotubearraysforsynergisticwatersplitting
AT fanettimattia roleoflatticedefectsontheopticalpropertiesoftio2nanotubearraysforsynergisticwatersplitting
AT valantmatjaz roleoflatticedefectsontheopticalpropertiesoftio2nanotubearraysforsynergisticwatersplitting
AT arcondenis roleoflatticedefectsontheopticalpropertiesoftio2nanotubearraysforsynergisticwatersplitting
AT pregeljmatej roleoflatticedefectsontheopticalpropertiesoftio2nanotubearraysforsynergisticwatersplitting
AT eminsaim roleoflatticedefectsontheopticalpropertiesoftio2nanotubearraysforsynergisticwatersplitting