Cargando…

Negative controls: Concepts and caveats

Unmeasured confounding is a well-known obstacle in causal inference. In recent years, negative controls have received increasing attention as a important tool to address concerns about the problem. The literature on the topic has expanded rapidly and several authors have advocated the more routine u...

Descripción completa

Detalles Bibliográficos
Autores principales: Penning de Vries, Bas BL, Groenwold, Rolf HH
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515451/
https://www.ncbi.nlm.nih.gov/pubmed/37338976
http://dx.doi.org/10.1177/09622802231181230
_version_ 1785108949660336128
author Penning de Vries, Bas BL
Groenwold, Rolf HH
author_facet Penning de Vries, Bas BL
Groenwold, Rolf HH
author_sort Penning de Vries, Bas BL
collection PubMed
description Unmeasured confounding is a well-known obstacle in causal inference. In recent years, negative controls have received increasing attention as a important tool to address concerns about the problem. The literature on the topic has expanded rapidly and several authors have advocated the more routine use of negative controls in epidemiological practice. In this article, we review concepts and methodologies based on negative controls for detection and correction of unmeasured confounding bias. We argue that negative controls may lack both specificity and sensitivity to detect unmeasured confounding and that proving the null hypothesis of a null negative control association is impossible. We focus our discussion on the control outcome calibration approach, the difference-in-difference approach, and the double-negative control approach as methods for confounding correction. For each of these methods, we highlight their assumptions and illustrate the potential impact of violations thereof. Given the potentially large impact of assumption violations, it may sometimes be desirable to replace strong conditions for exact identification with weaker, easily verifiable conditions, even when these imply at most partial identification of unmeasured confounding. Future research in this area may broaden the applicability of negative controls and in turn make them better suited for routine use in epidemiological practice. At present, however, the applicability of negative controls should be carefully judged on a case-by-case basis.
format Online
Article
Text
id pubmed-10515451
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher SAGE Publications
record_format MEDLINE/PubMed
spelling pubmed-105154512023-09-23 Negative controls: Concepts and caveats Penning de Vries, Bas BL Groenwold, Rolf HH Stat Methods Med Res Original Research Articles Unmeasured confounding is a well-known obstacle in causal inference. In recent years, negative controls have received increasing attention as a important tool to address concerns about the problem. The literature on the topic has expanded rapidly and several authors have advocated the more routine use of negative controls in epidemiological practice. In this article, we review concepts and methodologies based on negative controls for detection and correction of unmeasured confounding bias. We argue that negative controls may lack both specificity and sensitivity to detect unmeasured confounding and that proving the null hypothesis of a null negative control association is impossible. We focus our discussion on the control outcome calibration approach, the difference-in-difference approach, and the double-negative control approach as methods for confounding correction. For each of these methods, we highlight their assumptions and illustrate the potential impact of violations thereof. Given the potentially large impact of assumption violations, it may sometimes be desirable to replace strong conditions for exact identification with weaker, easily verifiable conditions, even when these imply at most partial identification of unmeasured confounding. Future research in this area may broaden the applicability of negative controls and in turn make them better suited for routine use in epidemiological practice. At present, however, the applicability of negative controls should be carefully judged on a case-by-case basis. SAGE Publications 2023-06-20 2023-08 /pmc/articles/PMC10515451/ /pubmed/37338976 http://dx.doi.org/10.1177/09622802231181230 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
spellingShingle Original Research Articles
Penning de Vries, Bas BL
Groenwold, Rolf HH
Negative controls: Concepts and caveats
title Negative controls: Concepts and caveats
title_full Negative controls: Concepts and caveats
title_fullStr Negative controls: Concepts and caveats
title_full_unstemmed Negative controls: Concepts and caveats
title_short Negative controls: Concepts and caveats
title_sort negative controls: concepts and caveats
topic Original Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515451/
https://www.ncbi.nlm.nih.gov/pubmed/37338976
http://dx.doi.org/10.1177/09622802231181230
work_keys_str_mv AT penningdevriesbasbl negativecontrolsconceptsandcaveats
AT groenwoldrolfhh negativecontrolsconceptsandcaveats