Cargando…
Imputation and missing indicators for handling missing data in the development and deployment of clinical prediction models: A simulation study
Background: In clinical prediction modelling, missing data can occur at any stage of the model pipeline; development, validation or deployment. Multiple imputation is often recommended yet challenging to apply at deployment; for example, the outcome cannot be in the imputation model, as recommended...
Autores principales: | Sisk, Rose, Sperrin, Matthew, Peek, Niels, van Smeden, Maarten, Martin, Glen Philip |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515473/ https://www.ncbi.nlm.nih.gov/pubmed/37105540 http://dx.doi.org/10.1177/09622802231165001 |
Ejemplares similares
-
Multiple imputation with missing indicators as proxies for unmeasured variables: simulation study
por: Sperrin, Matthew, et al.
Publicado: (2020) -
The Frailty Index, Missing Data, and Imputation
por: Pridham, Glen, et al.
Publicado: (2020) -
Multiple imputation for handling missing outcome data when estimating the relative risk
por: Sullivan, Thomas R., et al.
Publicado: (2017) -
Should multiple imputation be the method of choice for handling missing data in randomized trials?
por: Sullivan, Thomas R, et al.
Publicado: (2016) -
Some Classes of Logarithmic-Type Imputation Techniques for Handling Missing Data
por: Pandey, Awadhesh K., et al.
Publicado: (2021)