Cargando…

Electrically Tunable Nonlinearity at 3.2 Terahertz in Single-Layer Graphene

[Image: see text] Graphene is a nonlinear material in the terahertz (THz) frequency range, with χ((3)) ∼ 10(–9) m(2)/V(2) ∼ 15 orders of magnitude higher than that of other materials used in the THz range, such as GaAs or lithium niobate. This nonlinear behavior, combined with ultrafast dynamic for...

Descripción completa

Detalles Bibliográficos
Autores principales: Di Gaspare, Alessandra, Balci, Osman, Zhang, Jincan, Meersha, Adil, Shinde, Sachin M., Li, Lianhe, Davies, A. Giles, Linfield, Edmund H., Ferrari, Andrea C., Vitiello, Miriam S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515698/
https://www.ncbi.nlm.nih.gov/pubmed/37743945
http://dx.doi.org/10.1021/acsphotonics.3c00543
_version_ 1785109003928338432
author Di Gaspare, Alessandra
Balci, Osman
Zhang, Jincan
Meersha, Adil
Shinde, Sachin M.
Li, Lianhe
Davies, A. Giles
Linfield, Edmund H.
Ferrari, Andrea C.
Vitiello, Miriam S.
author_facet Di Gaspare, Alessandra
Balci, Osman
Zhang, Jincan
Meersha, Adil
Shinde, Sachin M.
Li, Lianhe
Davies, A. Giles
Linfield, Edmund H.
Ferrari, Andrea C.
Vitiello, Miriam S.
author_sort Di Gaspare, Alessandra
collection PubMed
description [Image: see text] Graphene is a nonlinear material in the terahertz (THz) frequency range, with χ((3)) ∼ 10(–9) m(2)/V(2) ∼ 15 orders of magnitude higher than that of other materials used in the THz range, such as GaAs or lithium niobate. This nonlinear behavior, combined with ultrafast dynamic for excited carriers, proved to be essential for third harmonic generation in the sub-THz and low (<2.5 THz) THz range, using moderate (60 kV/cm) fields and at room temperature. Here, we show that, for monochromatic high peak power (1.8 W) input THz signals, emitted by a quantum cascade laser, the nonlinearity can be controlled using an ionic liquid gate that tunes the graphene Fermi energy up to >1.2 eV. Pump and probe experiments reveal an intense absorption nonlinearity at 3.2 THz, with a dominant 3rd-order contribution at E(F) > 0.7 eV, hence opening intriguing perspectives per engineering novel architectures for light generation at frequencies > 9 THz.
format Online
Article
Text
id pubmed-10515698
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-105156982023-09-23 Electrically Tunable Nonlinearity at 3.2 Terahertz in Single-Layer Graphene Di Gaspare, Alessandra Balci, Osman Zhang, Jincan Meersha, Adil Shinde, Sachin M. Li, Lianhe Davies, A. Giles Linfield, Edmund H. Ferrari, Andrea C. Vitiello, Miriam S. ACS Photonics [Image: see text] Graphene is a nonlinear material in the terahertz (THz) frequency range, with χ((3)) ∼ 10(–9) m(2)/V(2) ∼ 15 orders of magnitude higher than that of other materials used in the THz range, such as GaAs or lithium niobate. This nonlinear behavior, combined with ultrafast dynamic for excited carriers, proved to be essential for third harmonic generation in the sub-THz and low (<2.5 THz) THz range, using moderate (60 kV/cm) fields and at room temperature. Here, we show that, for monochromatic high peak power (1.8 W) input THz signals, emitted by a quantum cascade laser, the nonlinearity can be controlled using an ionic liquid gate that tunes the graphene Fermi energy up to >1.2 eV. Pump and probe experiments reveal an intense absorption nonlinearity at 3.2 THz, with a dominant 3rd-order contribution at E(F) > 0.7 eV, hence opening intriguing perspectives per engineering novel architectures for light generation at frequencies > 9 THz. American Chemical Society 2023-08-14 /pmc/articles/PMC10515698/ /pubmed/37743945 http://dx.doi.org/10.1021/acsphotonics.3c00543 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Di Gaspare, Alessandra
Balci, Osman
Zhang, Jincan
Meersha, Adil
Shinde, Sachin M.
Li, Lianhe
Davies, A. Giles
Linfield, Edmund H.
Ferrari, Andrea C.
Vitiello, Miriam S.
Electrically Tunable Nonlinearity at 3.2 Terahertz in Single-Layer Graphene
title Electrically Tunable Nonlinearity at 3.2 Terahertz in Single-Layer Graphene
title_full Electrically Tunable Nonlinearity at 3.2 Terahertz in Single-Layer Graphene
title_fullStr Electrically Tunable Nonlinearity at 3.2 Terahertz in Single-Layer Graphene
title_full_unstemmed Electrically Tunable Nonlinearity at 3.2 Terahertz in Single-Layer Graphene
title_short Electrically Tunable Nonlinearity at 3.2 Terahertz in Single-Layer Graphene
title_sort electrically tunable nonlinearity at 3.2 terahertz in single-layer graphene
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515698/
https://www.ncbi.nlm.nih.gov/pubmed/37743945
http://dx.doi.org/10.1021/acsphotonics.3c00543
work_keys_str_mv AT digasparealessandra electricallytunablenonlinearityat32terahertzinsinglelayergraphene
AT balciosman electricallytunablenonlinearityat32terahertzinsinglelayergraphene
AT zhangjincan electricallytunablenonlinearityat32terahertzinsinglelayergraphene
AT meershaadil electricallytunablenonlinearityat32terahertzinsinglelayergraphene
AT shindesachinm electricallytunablenonlinearityat32terahertzinsinglelayergraphene
AT lilianhe electricallytunablenonlinearityat32terahertzinsinglelayergraphene
AT daviesagiles electricallytunablenonlinearityat32terahertzinsinglelayergraphene
AT linfieldedmundh electricallytunablenonlinearityat32terahertzinsinglelayergraphene
AT ferrariandreac electricallytunablenonlinearityat32terahertzinsinglelayergraphene
AT vitiellomiriams electricallytunablenonlinearityat32terahertzinsinglelayergraphene