Cargando…
Development of a Soft Sensor Using Machine Learning Algorithms for Predicting the Water Quality of an Onsite Wastewater Treatment System
[Image: see text] Developing advanced onsite wastewater treatment systems (OWTS) requires accurate and consistent water quality monitoring to evaluate treatment efficiency and ensure regulatory compliance. However, off-line parameters such as chemical oxygen demand (COD), total suspended solids (TSS...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515708/ https://www.ncbi.nlm.nih.gov/pubmed/37743952 http://dx.doi.org/10.1021/acsenvironau.2c00072 |
_version_ | 1785109006015004672 |
---|---|
author | Shyu, Hsiang-Yang Castro, Cynthia J. Bair, Robert A. Lu, Qing Yeh, Daniel H. |
author_facet | Shyu, Hsiang-Yang Castro, Cynthia J. Bair, Robert A. Lu, Qing Yeh, Daniel H. |
author_sort | Shyu, Hsiang-Yang |
collection | PubMed |
description | [Image: see text] Developing advanced onsite wastewater treatment systems (OWTS) requires accurate and consistent water quality monitoring to evaluate treatment efficiency and ensure regulatory compliance. However, off-line parameters such as chemical oxygen demand (COD), total suspended solids (TSS), and Escherichia coli (E. coli) require sample collection and time-consuming laboratory analyses that do not provide real-time information of system performance or component failure. While real-time COD analyzers have emerged in recent years, they are not economically viable for onsite systems due to cost and chemical consumables. This study aimed to design and implement a real-time remote monitoring system for OWTS by developing several multi-input and single-output soft sensors. The soft sensor integrates data that can be obtained from well-established in-line sensors to accurately predict key water quality parameters, including COD, TSS, and E. coli concentrations. The temporal and spatial water quality data of an existing field-tested OWTS operated for almost two years (n = 56 data points) were used to evaluate the prediction performance of four machine learning algorithms. These algorithms, namely, partial least square regression (PLS), support vector regression (SVR), cubist regression (CUB), and quantile regression neural network (QRNN), were chosen as candidate algorithms for their prior application and effectiveness in wastewater treatment predictions. Water quality parameters that can be measured in-line, including turbidity, color, pH, NH(4)(+), NO(3)(–), and electrical conductivity, were selected as model inputs for predicting COD, TSS, and E. coli. The results revealed that the trained SVR model provided a statistically significant prediction for COD with a mean absolute percentage error (MAPE) of 14.5% and R(2) of 0.96. The CUB model provided the optimal predictive performance for TSS, with a MAPE of 24.8% and R(2) of 0.99. None of the models were able to achieve optimal prediction results for E. coli; however, the CUB model performed the best with a MAPE of 71.4% and R(2) of 0.22. Given the large fluctuation in the concentrations of COD, TSS, and E. coli within the OWTS wastewater dataset, the proposed soft sensor models adequately predicted COD and TSS, while E. coli prediction was comparatively less accurate and requires further improvement. These results indicate that although water quality datasets for the OWTS are relatively small, machine learning-based soft sensors can provide useful predictive estimates of off-line parameters and provide real-time monitoring capabilities that can be used to make adjustments to OWTS operations. |
format | Online Article Text |
id | pubmed-10515708 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-105157082023-09-23 Development of a Soft Sensor Using Machine Learning Algorithms for Predicting the Water Quality of an Onsite Wastewater Treatment System Shyu, Hsiang-Yang Castro, Cynthia J. Bair, Robert A. Lu, Qing Yeh, Daniel H. ACS Environ Au [Image: see text] Developing advanced onsite wastewater treatment systems (OWTS) requires accurate and consistent water quality monitoring to evaluate treatment efficiency and ensure regulatory compliance. However, off-line parameters such as chemical oxygen demand (COD), total suspended solids (TSS), and Escherichia coli (E. coli) require sample collection and time-consuming laboratory analyses that do not provide real-time information of system performance or component failure. While real-time COD analyzers have emerged in recent years, they are not economically viable for onsite systems due to cost and chemical consumables. This study aimed to design and implement a real-time remote monitoring system for OWTS by developing several multi-input and single-output soft sensors. The soft sensor integrates data that can be obtained from well-established in-line sensors to accurately predict key water quality parameters, including COD, TSS, and E. coli concentrations. The temporal and spatial water quality data of an existing field-tested OWTS operated for almost two years (n = 56 data points) were used to evaluate the prediction performance of four machine learning algorithms. These algorithms, namely, partial least square regression (PLS), support vector regression (SVR), cubist regression (CUB), and quantile regression neural network (QRNN), were chosen as candidate algorithms for their prior application and effectiveness in wastewater treatment predictions. Water quality parameters that can be measured in-line, including turbidity, color, pH, NH(4)(+), NO(3)(–), and electrical conductivity, were selected as model inputs for predicting COD, TSS, and E. coli. The results revealed that the trained SVR model provided a statistically significant prediction for COD with a mean absolute percentage error (MAPE) of 14.5% and R(2) of 0.96. The CUB model provided the optimal predictive performance for TSS, with a MAPE of 24.8% and R(2) of 0.99. None of the models were able to achieve optimal prediction results for E. coli; however, the CUB model performed the best with a MAPE of 71.4% and R(2) of 0.22. Given the large fluctuation in the concentrations of COD, TSS, and E. coli within the OWTS wastewater dataset, the proposed soft sensor models adequately predicted COD and TSS, while E. coli prediction was comparatively less accurate and requires further improvement. These results indicate that although water quality datasets for the OWTS are relatively small, machine learning-based soft sensors can provide useful predictive estimates of off-line parameters and provide real-time monitoring capabilities that can be used to make adjustments to OWTS operations. American Chemical Society 2023-06-30 /pmc/articles/PMC10515708/ /pubmed/37743952 http://dx.doi.org/10.1021/acsenvironau.2c00072 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Shyu, Hsiang-Yang Castro, Cynthia J. Bair, Robert A. Lu, Qing Yeh, Daniel H. Development of a Soft Sensor Using Machine Learning Algorithms for Predicting the Water Quality of an Onsite Wastewater Treatment System |
title | Development
of a Soft Sensor Using Machine Learning
Algorithms for Predicting the Water Quality of an Onsite Wastewater
Treatment System |
title_full | Development
of a Soft Sensor Using Machine Learning
Algorithms for Predicting the Water Quality of an Onsite Wastewater
Treatment System |
title_fullStr | Development
of a Soft Sensor Using Machine Learning
Algorithms for Predicting the Water Quality of an Onsite Wastewater
Treatment System |
title_full_unstemmed | Development
of a Soft Sensor Using Machine Learning
Algorithms for Predicting the Water Quality of an Onsite Wastewater
Treatment System |
title_short | Development
of a Soft Sensor Using Machine Learning
Algorithms for Predicting the Water Quality of an Onsite Wastewater
Treatment System |
title_sort | development
of a soft sensor using machine learning
algorithms for predicting the water quality of an onsite wastewater
treatment system |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515708/ https://www.ncbi.nlm.nih.gov/pubmed/37743952 http://dx.doi.org/10.1021/acsenvironau.2c00072 |
work_keys_str_mv | AT shyuhsiangyang developmentofasoftsensorusingmachinelearningalgorithmsforpredictingthewaterqualityofanonsitewastewatertreatmentsystem AT castrocynthiaj developmentofasoftsensorusingmachinelearningalgorithmsforpredictingthewaterqualityofanonsitewastewatertreatmentsystem AT bairroberta developmentofasoftsensorusingmachinelearningalgorithmsforpredictingthewaterqualityofanonsitewastewatertreatmentsystem AT luqing developmentofasoftsensorusingmachinelearningalgorithmsforpredictingthewaterqualityofanonsitewastewatertreatmentsystem AT yehdanielh developmentofasoftsensorusingmachinelearningalgorithmsforpredictingthewaterqualityofanonsitewastewatertreatmentsystem |