Cargando…
Development of a Soft Sensor Using Machine Learning Algorithms for Predicting the Water Quality of an Onsite Wastewater Treatment System
[Image: see text] Developing advanced onsite wastewater treatment systems (OWTS) requires accurate and consistent water quality monitoring to evaluate treatment efficiency and ensure regulatory compliance. However, off-line parameters such as chemical oxygen demand (COD), total suspended solids (TSS...
Autores principales: | Shyu, Hsiang-Yang, Castro, Cynthia J., Bair, Robert A., Lu, Qing, Yeh, Daniel H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515708/ https://www.ncbi.nlm.nih.gov/pubmed/37743952 http://dx.doi.org/10.1021/acsenvironau.2c00072 |
Ejemplares similares
-
Performance and onsite regeneration of natural zeolite for ammonium removal in a field-scale non-sewered sanitation system
por: Castro, C.J., et al.
Publicado: (2021) -
Microbial Community Profiles in Wastewaters from Onsite Wastewater Treatment Systems Technology
por: Jałowiecki, Łukasz, et al.
Publicado: (2016) -
Machine Learning Weather Soft-Sensor for Advanced Control of Wastewater Treatment Plants
por: Hernández-del-Olmo, Félix, et al.
Publicado: (2019) -
Laboratory Demonstration and
Preliminary Techno-Economic
Analysis of an Onsite Wastewater Treatment System
por: Trotochaud, Lena, et al.
Publicado: (2020) -
Quantum Dot-Based Fluorometric Sensor for Hg(II) in
Water Customizable for Onsite Visual Detection
por: Nair, Vinayakan Ramachandran, et al.
Publicado: (2023)