Cargando…

Glycosylation and Crowded Membrane Effects on Influenza Neuraminidase Stability and Dynamics

All protein simulations are conducted with varying degrees of simplifications, oftentimes with unknown ramifications on how these simplifications affect the interpretability of the results. In this work we investigated how protein glycosylation and lateral crowding effects modulate an array of prope...

Descripción completa

Detalles Bibliográficos
Autores principales: Seitz, Christian, Deveci, İlker, McCammon, J. Andrew
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515755/
https://www.ncbi.nlm.nih.gov/pubmed/37745347
http://dx.doi.org/10.1101/2023.09.10.556910
Descripción
Sumario:All protein simulations are conducted with varying degrees of simplifications, oftentimes with unknown ramifications on how these simplifications affect the interpretability of the results. In this work we investigated how protein glycosylation and lateral crowding effects modulate an array of properties characterizing the stability and dynamics of influenza neuraminidase. We constructed three systems: 1) Glycosylated neuraminidase in a whole virion (i.e. crowded membrane) environment 2) Glycosylated neuraminidase in its own lipid bilayer 3) Unglycosylated neuraminidase in its own lipid bilayer. We saw that glycans tend to stabilize the protein structure and reduce its conformational flexibility while restricting solvent movement. Conversely, a crowded membrane environment encouraged exploration of the free energy landscape and a large scale conformational change while making the protein structure more compact. Understanding these effects informs what factors one must consider while attempting to recapture the desired level of physical accuracy.