Cargando…
Transferable Coarse Graining via Contrastive Learning of Graph Neural Networks
Coarse-grained (CG) force fields are essential for molecular dynamics simulations of biomolecules, striking a balance between computational efficiency and biological realism. These simulations employ simplified models grouping atoms into interaction sites, enabling the study of complex biomolecular...
Autores principales: | Airas, Justin, Ding, Xinqiang, Zhang, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515757/ https://www.ncbi.nlm.nih.gov/pubmed/37745447 http://dx.doi.org/10.1101/2023.09.08.556923 |
Ejemplares similares
-
Graph neural network based coarse-grained mapping prediction
por: Li, Zhiheng, et al.
Publicado: (2020) -
Correction: Graph neural network based coarse-grained mapping prediction
por: Li, Zhiheng, et al.
Publicado: (2021) -
Coarse-graining of the dynamics seen in neural networks
por: Ben-Tal, Alona, et al.
Publicado: (2013) -
Coarse-grained statistics for attributing criticality to heterogeneous neural networks
por: Corcoran, Thomas Gregory, et al.
Publicado: (2011) -
Coarse-Grained Neural Network Model of the Basal Ganglia to Simulate Reinforcement Learning Tasks
por: Drapała, Jarosław, et al.
Publicado: (2022)