Cargando…

Structure-based discovery of CFTR potentiators and inhibitors

The cystic fibrosis transmembrane conductance regulator (CFTR) is a crucial ion channel whose loss of function leads to cystic fibrosis, while its hyperactivation leads to secretory diarrhea. Small molecules that improve CFTR folding (correctors) or function (potentiators) are clinically available....

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Fangyu, Kaplan, Anat Levit, Levring, Jesper, Einsiedel, Jürgen, Tiedt, Stephanie, Distler, Katharina, Omattage, Natalie S., Kondratov, Ivan S., Moroz, Yurii S., Pietz, Harlan L., Irwin, John J., Gmeiner, Peter, Shoichet, Brian K., Chen, Jue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515777/
https://www.ncbi.nlm.nih.gov/pubmed/37745391
http://dx.doi.org/10.1101/2023.09.09.557002
_version_ 1785109018314801152
author Liu, Fangyu
Kaplan, Anat Levit
Levring, Jesper
Einsiedel, Jürgen
Tiedt, Stephanie
Distler, Katharina
Omattage, Natalie S.
Kondratov, Ivan S.
Moroz, Yurii S.
Pietz, Harlan L.
Irwin, John J.
Gmeiner, Peter
Shoichet, Brian K.
Chen, Jue
author_facet Liu, Fangyu
Kaplan, Anat Levit
Levring, Jesper
Einsiedel, Jürgen
Tiedt, Stephanie
Distler, Katharina
Omattage, Natalie S.
Kondratov, Ivan S.
Moroz, Yurii S.
Pietz, Harlan L.
Irwin, John J.
Gmeiner, Peter
Shoichet, Brian K.
Chen, Jue
author_sort Liu, Fangyu
collection PubMed
description The cystic fibrosis transmembrane conductance regulator (CFTR) is a crucial ion channel whose loss of function leads to cystic fibrosis, while its hyperactivation leads to secretory diarrhea. Small molecules that improve CFTR folding (correctors) or function (potentiators) are clinically available. However, the only potentiator, ivacaftor, has suboptimal pharmacokinetics and inhibitors have yet to be clinically developed. Here we combine molecular docking, electrophysiology, cryo-EM, and medicinal chemistry to identify novel CFTR modulators. We docked ~155 million molecules into the potentiator site on CFTR, synthesized 53 test ligands, and used structure-based optimization to identify candidate modulators. This approach uncovered novel mid-nanomolar potentiators as well as inhibitors that bind to the same allosteric site. These molecules represent potential leads for the development of more effective drugs for cystic fibrosis and secretory diarrhea, demonstrating the feasibility of large-scale docking for ion channel drug discovery.
format Online
Article
Text
id pubmed-10515777
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-105157772023-09-23 Structure-based discovery of CFTR potentiators and inhibitors Liu, Fangyu Kaplan, Anat Levit Levring, Jesper Einsiedel, Jürgen Tiedt, Stephanie Distler, Katharina Omattage, Natalie S. Kondratov, Ivan S. Moroz, Yurii S. Pietz, Harlan L. Irwin, John J. Gmeiner, Peter Shoichet, Brian K. Chen, Jue bioRxiv Article The cystic fibrosis transmembrane conductance regulator (CFTR) is a crucial ion channel whose loss of function leads to cystic fibrosis, while its hyperactivation leads to secretory diarrhea. Small molecules that improve CFTR folding (correctors) or function (potentiators) are clinically available. However, the only potentiator, ivacaftor, has suboptimal pharmacokinetics and inhibitors have yet to be clinically developed. Here we combine molecular docking, electrophysiology, cryo-EM, and medicinal chemistry to identify novel CFTR modulators. We docked ~155 million molecules into the potentiator site on CFTR, synthesized 53 test ligands, and used structure-based optimization to identify candidate modulators. This approach uncovered novel mid-nanomolar potentiators as well as inhibitors that bind to the same allosteric site. These molecules represent potential leads for the development of more effective drugs for cystic fibrosis and secretory diarrhea, demonstrating the feasibility of large-scale docking for ion channel drug discovery. Cold Spring Harbor Laboratory 2023-09-12 /pmc/articles/PMC10515777/ /pubmed/37745391 http://dx.doi.org/10.1101/2023.09.09.557002 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Liu, Fangyu
Kaplan, Anat Levit
Levring, Jesper
Einsiedel, Jürgen
Tiedt, Stephanie
Distler, Katharina
Omattage, Natalie S.
Kondratov, Ivan S.
Moroz, Yurii S.
Pietz, Harlan L.
Irwin, John J.
Gmeiner, Peter
Shoichet, Brian K.
Chen, Jue
Structure-based discovery of CFTR potentiators and inhibitors
title Structure-based discovery of CFTR potentiators and inhibitors
title_full Structure-based discovery of CFTR potentiators and inhibitors
title_fullStr Structure-based discovery of CFTR potentiators and inhibitors
title_full_unstemmed Structure-based discovery of CFTR potentiators and inhibitors
title_short Structure-based discovery of CFTR potentiators and inhibitors
title_sort structure-based discovery of cftr potentiators and inhibitors
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515777/
https://www.ncbi.nlm.nih.gov/pubmed/37745391
http://dx.doi.org/10.1101/2023.09.09.557002
work_keys_str_mv AT liufangyu structurebaseddiscoveryofcftrpotentiatorsandinhibitors
AT kaplananatlevit structurebaseddiscoveryofcftrpotentiatorsandinhibitors
AT levringjesper structurebaseddiscoveryofcftrpotentiatorsandinhibitors
AT einsiedeljurgen structurebaseddiscoveryofcftrpotentiatorsandinhibitors
AT tiedtstephanie structurebaseddiscoveryofcftrpotentiatorsandinhibitors
AT distlerkatharina structurebaseddiscoveryofcftrpotentiatorsandinhibitors
AT omattagenatalies structurebaseddiscoveryofcftrpotentiatorsandinhibitors
AT kondratovivans structurebaseddiscoveryofcftrpotentiatorsandinhibitors
AT morozyuriis structurebaseddiscoveryofcftrpotentiatorsandinhibitors
AT pietzharlanl structurebaseddiscoveryofcftrpotentiatorsandinhibitors
AT irwinjohnj structurebaseddiscoveryofcftrpotentiatorsandinhibitors
AT gmeinerpeter structurebaseddiscoveryofcftrpotentiatorsandinhibitors
AT shoichetbriank structurebaseddiscoveryofcftrpotentiatorsandinhibitors
AT chenjue structurebaseddiscoveryofcftrpotentiatorsandinhibitors