Cargando…
Benchmarking Cross-Docking Strategies for Structure-Informed Machine Learning in Kinase Drug Discovery
In recent years machine learning has transformed many aspects of the drug discovery process including small molecule design for which the prediction of the bioactivity is an integral part. Leveraging structural information about the interactions between a small molecule and its protein target has gr...
Autores principales: | Schaller, David, Christ, Clara D., Chodera, John D., Volkamer, Andrea |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515787/ https://www.ncbi.nlm.nih.gov/pubmed/37745489 http://dx.doi.org/10.1101/2023.09.11.557138 |
Ejemplares similares
-
MF-PCBA: Multifidelity
High-Throughput Screening Benchmarks
for Drug Discovery and Machine Learning
por: Buterez, David, et al.
Publicado: (2023) -
Benchmarking AlphaFold‐enabled molecular docking predictions for antibiotic discovery
por: Wong, Felix, et al.
Publicado: (2022) -
Is structure based drug design ready for selectivity optimization?
por: Albanese, Steven K., et al.
Publicado: (2020) -
Benchmarking the acceleration of materials discovery by sequential learning
por: Rohr, Brian, et al.
Publicado: (2020) -
Machine Learning Methods in Drug Discovery
por: Patel, Lauv, et al.
Publicado: (2020)