Cargando…

Prediction of Interactions between Cell Surface Proteins by Machine Learning

Cells detect changes of external environments or communicate with each other through proteins on their surfaces. These cell surface proteins form a complicated network of interactions in order to fulfill their functions. The interactions between cell surface proteins are highly dynamic and thus chal...

Descripción completa

Detalles Bibliográficos
Autores principales: Su, Zhaoqian, Griffin, Brian, Emmons, Scott, Wu, Yinghao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515853/
https://www.ncbi.nlm.nih.gov/pubmed/37745607
http://dx.doi.org/10.1101/2023.09.12.557337
Descripción
Sumario:Cells detect changes of external environments or communicate with each other through proteins on their surfaces. These cell surface proteins form a complicated network of interactions in order to fulfill their functions. The interactions between cell surface proteins are highly dynamic and thus challenging to detect using traditional experimental techniques. Here we tackle this challenge by a computational framework. The primary focus of the framework is to develop new tools to identify interactions between domains in immunoglobulin (Ig) fold, which is the most abundant domain family in cell surface proteins. These interactions could be formed between ligands and receptors from different cells, or between proteins on the same cell surface. In practice, we collected all structural data of Ig domain interactions and transformed them into an interface fragment pair library. A high dimensional profile can be then constructed from the library for a given pair of query protein sequences. Multiple machine learning models were used to read this profile, so that the probability of interaction between the query proteins can be predicted. We tested our models to an experimentally derived dataset which contains 564 cell surface proteins in human. The cross-validation results show that we can achieve higher than 70% accuracy in identifying the PPIs within this dataset. We then applied this method to a group of 46 cell surface proteins in C elegans. We screened every possible interaction between these proteins. Many interactions recognized by our machine learning classifiers have been experimentally confirmed in the literatures. In conclusion, our computational platform serves a useful tool to help identifying potential new interactions between cell surface proteins in addition to current state-of-the-art experimental techniques. The tool is freely accessible for use by the scientific community. Moreover, the general framework of the machine learning classification can also be extended to study interactions of proteins in other domain superfamilies.