Cargando…
Predicting fungal secondary metabolite activity from biosynthetic gene cluster data using machine learning
Fungal secondary metabolites (SMs) play a significant role in the diversity of ecological communities, niches, and lifestyles in the fungal kingdom. Many fungal SMs have medically and industrially important properties including antifungal, antibacterial, and antitumor activity, and a single metaboli...
Autores principales: | Riedling, Olivia, Walker, Allison S., Rokas, Antonis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515863/ https://www.ncbi.nlm.nih.gov/pubmed/37745539 http://dx.doi.org/10.1101/2023.09.12.557468 |
Ejemplares similares
-
A Machine Learning Bioinformatics Method to Predict
Biological Activity from Biosynthetic Gene Clusters
por: Walker, Allison S., et al.
Publicado: (2021) -
Horizontal Transfer and Death of a Fungal Secondary Metabolic Gene Cluster
por: Campbell, Matthew A., et al.
Publicado: (2012) -
The evolution of the gliotoxin biosynthetic gene cluster in Penicillium fungi
por: Balamurugan, Charu, et al.
Publicado: (2023) -
The sporothriolides. A new biosynthetic family of fungal secondary metabolites
por: Tian, Dong-Song, et al.
Publicado: (2020) -
Two Different Secondary Metabolism Gene Clusters Occupied the Same Ancestral Locus in Fungal Dermatophytes of the Arthrodermataceae
por: Zhang, Han, et al.
Publicado: (2012)