Cargando…

Epidermal growth factor receptors in vascular endothelial cells contribute to functional hyperemia in the brain

Functional hyperemia – activity-dependent increases in local blood perfusion – underlies the on-demand delivery of blood to regions of enhanced neuronal activity, a process that is crucial for brain health. Importantly, functional hyperemia deficits have been linked to multiple dementia risk factors...

Descripción completa

Detalles Bibliográficos
Autores principales: Ferris, Hannah R., Hill-Eubanks, David C., Nelson, Mark T., Wellman, George C., Koide, Masayo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516026/
https://www.ncbi.nlm.nih.gov/pubmed/37745396
http://dx.doi.org/10.1101/2023.09.15.557981
Descripción
Sumario:Functional hyperemia – activity-dependent increases in local blood perfusion – underlies the on-demand delivery of blood to regions of enhanced neuronal activity, a process that is crucial for brain health. Importantly, functional hyperemia deficits have been linked to multiple dementia risk factors, including aging, chronic hypertension, and cerebral small vessel disease (cSVD). We previously reported crippled functional hyperemia in a mouse model of genetic cSVD that was likely caused by depletion of phosphatidylinositol 4,5-bisphosphate (PIP(2)) in capillary endothelial cells (EC) downstream of impaired epidermal growth factor receptor (EGFR) signaling. Here, using EC-specific EGFR-knockout (KO) mice, we directly examined the role of endothelial EGFR signaling in functional hyperemia, assessed by measuring increases in cerebral blood flow in response to contralateral whisker stimulation using laser Doppler flowmetry. Molecular characterizations showed that EGFR expression was dramatically decreased in freshly isolated capillaries from EC-EGFR-KO mice, as expected. Notably, whisker stimulation-induced functional hyperemia was significantly impaired in these mice, an effect that was rescued by exogenous administration of PIP(2), but not by the EGFR ligand, HB-EGF. These data suggest that the deletion of the EGFR specifically in ECs depletes PIP(2) and attenuates functional hyperemia, underscoring the central role of the endothelial EGFR signaling in cerebral blood flow regulation.