Cargando…
A Novel Quantitative Metric Based on a Complete and Unique Characterization of Neural Network Activity: 4D Shannon’s Entropy
The human brain comprises an intricate web of connections that generate complex neural networks capable of storing and processing information. This information depends on multiple factors, including underlying network structure, connectivity, and interactions; and thus, methods to characterize neura...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516034/ https://www.ncbi.nlm.nih.gov/pubmed/37745513 http://dx.doi.org/10.1101/2023.09.15.557974 |
_version_ | 1785109058893643776 |
---|---|
author | Deshpande, Sarita S. van Drongelen, Wim |
author_facet | Deshpande, Sarita S. van Drongelen, Wim |
author_sort | Deshpande, Sarita S. |
collection | PubMed |
description | The human brain comprises an intricate web of connections that generate complex neural networks capable of storing and processing information. This information depends on multiple factors, including underlying network structure, connectivity, and interactions; and thus, methods to characterize neural networks typically aim to unravel and interpret a combination of these factors. Here, we present four-dimensional (4D) Shannon’s entropy, a novel quantitative metric of network activity based on the Triple Correlation Uniqueness (TCU) theorem. Triple correlation, which provides a complete and unique characterization of the network, relates three nodes separated by up to four spatiotemporal lags. Here, we evaluate the 4D entropy from the spatiotemporal lag probability distribution function (PDF) of the network activity’s triple correlation. Given a spike raster, we compute triple correlation by iterating over time and space. Summing the contributions to the triple correlation over each of the spatial and temporal lag combinations generates a unique 4D spatiotemporal lag distribution, from which we estimate a PDF and compute Shannon’s entropy. To outline our approach, we first compute 4D Shannon’s entropy from feedforward motif-class patterns in a simulated spike raster. We then apply this methodology to spiking activity recorded from rat cortical cultures to compare our results to previously published results of pairwise (2D) correlated spectral entropy over time. We find that while first- and second-order metrics of activity (spike rate and cross-correlation) show agreement with previously published results, our 4D entropy computation (which also includes third-order interactions) reveals a greater depth of underlying network organization compared to published pairwise entropy. Ultimately, because our approach is based on the TCU, we propose that 4D Shannon’s entropy is a more complete tool for neural network characterization. |
format | Online Article Text |
id | pubmed-10516034 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-105160342023-09-23 A Novel Quantitative Metric Based on a Complete and Unique Characterization of Neural Network Activity: 4D Shannon’s Entropy Deshpande, Sarita S. van Drongelen, Wim bioRxiv Article The human brain comprises an intricate web of connections that generate complex neural networks capable of storing and processing information. This information depends on multiple factors, including underlying network structure, connectivity, and interactions; and thus, methods to characterize neural networks typically aim to unravel and interpret a combination of these factors. Here, we present four-dimensional (4D) Shannon’s entropy, a novel quantitative metric of network activity based on the Triple Correlation Uniqueness (TCU) theorem. Triple correlation, which provides a complete and unique characterization of the network, relates three nodes separated by up to four spatiotemporal lags. Here, we evaluate the 4D entropy from the spatiotemporal lag probability distribution function (PDF) of the network activity’s triple correlation. Given a spike raster, we compute triple correlation by iterating over time and space. Summing the contributions to the triple correlation over each of the spatial and temporal lag combinations generates a unique 4D spatiotemporal lag distribution, from which we estimate a PDF and compute Shannon’s entropy. To outline our approach, we first compute 4D Shannon’s entropy from feedforward motif-class patterns in a simulated spike raster. We then apply this methodology to spiking activity recorded from rat cortical cultures to compare our results to previously published results of pairwise (2D) correlated spectral entropy over time. We find that while first- and second-order metrics of activity (spike rate and cross-correlation) show agreement with previously published results, our 4D entropy computation (which also includes third-order interactions) reveals a greater depth of underlying network organization compared to published pairwise entropy. Ultimately, because our approach is based on the TCU, we propose that 4D Shannon’s entropy is a more complete tool for neural network characterization. Cold Spring Harbor Laboratory 2023-09-15 /pmc/articles/PMC10516034/ /pubmed/37745513 http://dx.doi.org/10.1101/2023.09.15.557974 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. |
spellingShingle | Article Deshpande, Sarita S. van Drongelen, Wim A Novel Quantitative Metric Based on a Complete and Unique Characterization of Neural Network Activity: 4D Shannon’s Entropy |
title | A Novel Quantitative Metric Based on a Complete and Unique Characterization of Neural Network Activity: 4D Shannon’s Entropy |
title_full | A Novel Quantitative Metric Based on a Complete and Unique Characterization of Neural Network Activity: 4D Shannon’s Entropy |
title_fullStr | A Novel Quantitative Metric Based on a Complete and Unique Characterization of Neural Network Activity: 4D Shannon’s Entropy |
title_full_unstemmed | A Novel Quantitative Metric Based on a Complete and Unique Characterization of Neural Network Activity: 4D Shannon’s Entropy |
title_short | A Novel Quantitative Metric Based on a Complete and Unique Characterization of Neural Network Activity: 4D Shannon’s Entropy |
title_sort | novel quantitative metric based on a complete and unique characterization of neural network activity: 4d shannon’s entropy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516034/ https://www.ncbi.nlm.nih.gov/pubmed/37745513 http://dx.doi.org/10.1101/2023.09.15.557974 |
work_keys_str_mv | AT deshpandesaritas anovelquantitativemetricbasedonacompleteanduniquecharacterizationofneuralnetworkactivity4dshannonsentropy AT vandrongelenwim anovelquantitativemetricbasedonacompleteanduniquecharacterizationofneuralnetworkactivity4dshannonsentropy AT deshpandesaritas novelquantitativemetricbasedonacompleteanduniquecharacterizationofneuralnetworkactivity4dshannonsentropy AT vandrongelenwim novelquantitativemetricbasedonacompleteanduniquecharacterizationofneuralnetworkactivity4dshannonsentropy |