Cargando…

Transcriptional Signatures of Hippocampal Tau Pathology in Primary Age-Related Tauopathy and Alzheimer’s Disease

BACKGROUND: Tau pathology is common in age-related neurodegenerative diseases. Tau pathology in primary age-related tauopathy (PART) and in Alzheimer’s disease (AD) has a similar biochemical structure and anatomic distribution, which is distinct from tau pathology in other diseases. However, the mol...

Descripción completa

Detalles Bibliográficos
Autores principales: Stein-O’Brien, Genevieve L, Palaganas, Ryan, Meyer, Ernest M., Redding-Ochoa, Javier, Pletnikova, Olga, Guo, Haidan, Bell, William R, Troncoso, Juan C, Huganir, Richard L, Morris, Meaghan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516095/
https://www.ncbi.nlm.nih.gov/pubmed/37745408
http://dx.doi.org/10.1101/2023.09.12.23295440
_version_ 1785109069788348416
author Stein-O’Brien, Genevieve L
Palaganas, Ryan
Meyer, Ernest M.
Redding-Ochoa, Javier
Pletnikova, Olga
Guo, Haidan
Bell, William R
Troncoso, Juan C
Huganir, Richard L
Morris, Meaghan
author_facet Stein-O’Brien, Genevieve L
Palaganas, Ryan
Meyer, Ernest M.
Redding-Ochoa, Javier
Pletnikova, Olga
Guo, Haidan
Bell, William R
Troncoso, Juan C
Huganir, Richard L
Morris, Meaghan
author_sort Stein-O’Brien, Genevieve L
collection PubMed
description BACKGROUND: Tau pathology is common in age-related neurodegenerative diseases. Tau pathology in primary age-related tauopathy (PART) and in Alzheimer’s disease (AD) has a similar biochemical structure and anatomic distribution, which is distinct from tau pathology in other diseases. However, the molecular changes associated with intraneuronal tau pathology in PART and AD, and whether these changes are similar in the two diseases, is largely unexplored. METHODS: Using GeoMx spatial transcriptomics, mRNA was quantified in CA1 pyramidal neurons with tau pathology and adjacent neurons without tau pathology in 6 cases of PART and 6 cases of AD, and compared to 4 control cases without pathology. Transcriptional changes were analyzed for differential gene expression and for coordinated patterns of gene expression associated with both disease state and intraneuronal tau pathology. RESULTS: Synaptic gene changes and two novel gene expression signatures associated with intraneuronal tau were identified in PART and AD. Overall, gene expression changes associated with intraneuronal tau pathology were similar in PART and AD. Synaptic gene expression was decreased overall in neurons in AD and PART compared to control cases. However, this decrease was largely driven by neurons lacking tau pathology. Synaptic gene expression was increased in tau-positive neurons compared to tau-negative neurons in disease. Two novel gene expression signatures associated with intraneuronal tau were identified by examining coordinated patterns of gene expression. Genes in the up-regulated expression pattern were enriched in calcium regulation and synaptic function pathways, specifically in synaptic exocytosis. These synaptic gene changes and intraneuronal tau expression signatures were confirmed in a published transcriptional dataset of cortical neurons with tau pathology in AD. CONCLUSIONS: PART and AD show similar transcriptional changes associated with intraneuronal tau pathology in CA1 pyramidal neurons, raising the possibility of a mechanistic relationship between the tau pathology in the two diseases. Intraneuronal tau pathology was also associated with increased expression of genes associated with synaptic function and calcium regulation compared to tau-negative disease neurons. The findings highlight the power of molecular analysis stratified by pathology in neurodegenerative disease and provide novel insight into common molecular pathways associated with intraneuronal tau in PART and AD.
format Online
Article
Text
id pubmed-10516095
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-105160952023-09-23 Transcriptional Signatures of Hippocampal Tau Pathology in Primary Age-Related Tauopathy and Alzheimer’s Disease Stein-O’Brien, Genevieve L Palaganas, Ryan Meyer, Ernest M. Redding-Ochoa, Javier Pletnikova, Olga Guo, Haidan Bell, William R Troncoso, Juan C Huganir, Richard L Morris, Meaghan medRxiv Article BACKGROUND: Tau pathology is common in age-related neurodegenerative diseases. Tau pathology in primary age-related tauopathy (PART) and in Alzheimer’s disease (AD) has a similar biochemical structure and anatomic distribution, which is distinct from tau pathology in other diseases. However, the molecular changes associated with intraneuronal tau pathology in PART and AD, and whether these changes are similar in the two diseases, is largely unexplored. METHODS: Using GeoMx spatial transcriptomics, mRNA was quantified in CA1 pyramidal neurons with tau pathology and adjacent neurons without tau pathology in 6 cases of PART and 6 cases of AD, and compared to 4 control cases without pathology. Transcriptional changes were analyzed for differential gene expression and for coordinated patterns of gene expression associated with both disease state and intraneuronal tau pathology. RESULTS: Synaptic gene changes and two novel gene expression signatures associated with intraneuronal tau were identified in PART and AD. Overall, gene expression changes associated with intraneuronal tau pathology were similar in PART and AD. Synaptic gene expression was decreased overall in neurons in AD and PART compared to control cases. However, this decrease was largely driven by neurons lacking tau pathology. Synaptic gene expression was increased in tau-positive neurons compared to tau-negative neurons in disease. Two novel gene expression signatures associated with intraneuronal tau were identified by examining coordinated patterns of gene expression. Genes in the up-regulated expression pattern were enriched in calcium regulation and synaptic function pathways, specifically in synaptic exocytosis. These synaptic gene changes and intraneuronal tau expression signatures were confirmed in a published transcriptional dataset of cortical neurons with tau pathology in AD. CONCLUSIONS: PART and AD show similar transcriptional changes associated with intraneuronal tau pathology in CA1 pyramidal neurons, raising the possibility of a mechanistic relationship between the tau pathology in the two diseases. Intraneuronal tau pathology was also associated with increased expression of genes associated with synaptic function and calcium regulation compared to tau-negative disease neurons. The findings highlight the power of molecular analysis stratified by pathology in neurodegenerative disease and provide novel insight into common molecular pathways associated with intraneuronal tau in PART and AD. Cold Spring Harbor Laboratory 2023-09-12 /pmc/articles/PMC10516095/ /pubmed/37745408 http://dx.doi.org/10.1101/2023.09.12.23295440 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Stein-O’Brien, Genevieve L
Palaganas, Ryan
Meyer, Ernest M.
Redding-Ochoa, Javier
Pletnikova, Olga
Guo, Haidan
Bell, William R
Troncoso, Juan C
Huganir, Richard L
Morris, Meaghan
Transcriptional Signatures of Hippocampal Tau Pathology in Primary Age-Related Tauopathy and Alzheimer’s Disease
title Transcriptional Signatures of Hippocampal Tau Pathology in Primary Age-Related Tauopathy and Alzheimer’s Disease
title_full Transcriptional Signatures of Hippocampal Tau Pathology in Primary Age-Related Tauopathy and Alzheimer’s Disease
title_fullStr Transcriptional Signatures of Hippocampal Tau Pathology in Primary Age-Related Tauopathy and Alzheimer’s Disease
title_full_unstemmed Transcriptional Signatures of Hippocampal Tau Pathology in Primary Age-Related Tauopathy and Alzheimer’s Disease
title_short Transcriptional Signatures of Hippocampal Tau Pathology in Primary Age-Related Tauopathy and Alzheimer’s Disease
title_sort transcriptional signatures of hippocampal tau pathology in primary age-related tauopathy and alzheimer’s disease
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516095/
https://www.ncbi.nlm.nih.gov/pubmed/37745408
http://dx.doi.org/10.1101/2023.09.12.23295440
work_keys_str_mv AT steinobriengenevievel transcriptionalsignaturesofhippocampaltaupathologyinprimaryagerelatedtauopathyandalzheimersdisease
AT palaganasryan transcriptionalsignaturesofhippocampaltaupathologyinprimaryagerelatedtauopathyandalzheimersdisease
AT meyerernestm transcriptionalsignaturesofhippocampaltaupathologyinprimaryagerelatedtauopathyandalzheimersdisease
AT reddingochoajavier transcriptionalsignaturesofhippocampaltaupathologyinprimaryagerelatedtauopathyandalzheimersdisease
AT pletnikovaolga transcriptionalsignaturesofhippocampaltaupathologyinprimaryagerelatedtauopathyandalzheimersdisease
AT guohaidan transcriptionalsignaturesofhippocampaltaupathologyinprimaryagerelatedtauopathyandalzheimersdisease
AT bellwilliamr transcriptionalsignaturesofhippocampaltaupathologyinprimaryagerelatedtauopathyandalzheimersdisease
AT troncosojuanc transcriptionalsignaturesofhippocampaltaupathologyinprimaryagerelatedtauopathyandalzheimersdisease
AT huganirrichardl transcriptionalsignaturesofhippocampaltaupathologyinprimaryagerelatedtauopathyandalzheimersdisease
AT morrismeaghan transcriptionalsignaturesofhippocampaltaupathologyinprimaryagerelatedtauopathyandalzheimersdisease