Cargando…
Expressive dynamics models with nonlinear injective readouts enable reliable recovery of latent features from neural activity
The advent of large-scale neural recordings has enabled new approaches that aim to discover the computational mechanisms of neural circuits by understanding the rules that govern how their state evolves over time. While these neural dynamics cannot be directly measured, they can typically be approxi...
Autores principales: | Versteeg, Christopher, Sedler, Andrew R., McCart, Jonathan D., Pandarinath, Chethan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516113/ https://www.ncbi.nlm.nih.gov/pubmed/37744459 |
Ejemplares similares
-
High-performance neural population dynamics modeling enabled by scalable computational infrastructure
por: Patel, Aashish N., et al.
Publicado: (2023) -
Toothache of Horses
por: McCart, T. S.
Publicado: (1887) -
A Novel Mechanism for Switching a Neural System from One State to Another
por: Pandarinath, Chethan, et al.
Publicado: (2010) -
Editorial: Molecular mechanisms in breast cancer progression and metastasis
por: Fedele, Monica, et al.
Publicado: (2022) -
Nonlinear mixed selectivity supports reliable neural computation
por: Johnston, W. Jeffrey, et al.
Publicado: (2020)