Cargando…
Structural Analysis of the Colony-Stimulating Factor 3 Gene of Granulocyte Colony-Stimulating Factor-Producing Urothelial Cancer
Background Granulocyte colony-stimulating factor (G-CSF) is a member of the CSF family of glycoproteins that regulate the proliferation, differentiation, and mobilization of neutrophils. G-CSF-producing malignant cancers have been reported to occur in various organs and are mostly associated with po...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cureus
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516146/ https://www.ncbi.nlm.nih.gov/pubmed/37746465 http://dx.doi.org/10.7759/cureus.43981 |
Sumario: | Background Granulocyte colony-stimulating factor (G-CSF) is a member of the CSF family of glycoproteins that regulate the proliferation, differentiation, and mobilization of neutrophils. G-CSF-producing malignant cancers have been reported to occur in various organs and are mostly associated with poor clinical prognosis. Here, we analyzed the structure of the CSF3 gene encoding the G-CSF protein to delineate the mechanism of G-CSF production by the cancer cells. Methodology Two cases of G-CSF-producing urothelial cancers and three cases of G-CSF-nonproducing bladder cancers were enrolled for genetic analysis. Results In one case of G-CSF-producing bladder cancer, six somatic mutations were detected in the 5’- upstream region of the CSF3 gene. No somatic mutations in the CSF3 gene were detected in another case of G-CSF-producing renal pelvic cancer and G-CSF-nonproducing bladder cancers. Copy numbers of the CSF3 gene were not increased in G-CSF-producing urothelial cancers. Conclusions Somatic mutations in the 5’- upstream region of the CSF3 gene may cause G-CSF protein overproduction. |
---|