Cargando…
The Contribution of Genetic Variants of the Peroxisome Proliferator-Activated Receptor-Alpha Gene to High-Altitude Hypoxia Adaptation in Sherpa Highlanders
Kinota, Fumiya, Yunden Droma, Nobumitsu Kobayashi, Toshimichi Horiuchi, Yoshiaki Kitaguchi, Masanori Yasuo, Masao Ota, and Masayuki Hanaoka. The contribution of genetic variants of the gene encoding peroxisome proliferator-activated receptor-alpha gene (PPARA) to high-altitude hypoxia adaptation in...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Mary Ann Liebert, Inc., publishers
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516232/ https://www.ncbi.nlm.nih.gov/pubmed/30475063 http://dx.doi.org/10.1089/ham.2018.0052 |
_version_ | 1785109095536132096 |
---|---|
author | Kinota, Fumiya Droma, Yunden Kobayashi, Nobumitsu Horiuchi, Toshimichi Kitaguchi, Yoshiaki Yasuo, Masanori Ota, Masao Hanaoka, Masayuki |
author_facet | Kinota, Fumiya Droma, Yunden Kobayashi, Nobumitsu Horiuchi, Toshimichi Kitaguchi, Yoshiaki Yasuo, Masanori Ota, Masao Hanaoka, Masayuki |
author_sort | Kinota, Fumiya |
collection | PubMed |
description | Kinota, Fumiya, Yunden Droma, Nobumitsu Kobayashi, Toshimichi Horiuchi, Yoshiaki Kitaguchi, Masanori Yasuo, Masao Ota, and Masayuki Hanaoka. The contribution of genetic variants of the gene encoding peroxisome proliferator-activated receptor-alpha gene (PPARA) to high-altitude hypoxia adaptation in Sherpa highlanders. High Alt Med Biol. 24:186–192, 2023.—Sherpa highlanders, who play invaluable roles in the exploration of Mount Everest, have exceptional tolerance to hypobaric hypoxia. Sherpa people are well known to possess the traits determined by genetic background for high-altitude adaptation. The metabolic adaptation mechanism is one of the biological ways for Sherpa highlanders in protecting them from hypoxia stress at high altitude. Studies have suggested that the gene encoding PPARA is associated with metabolic adaptation in the Himalayan population of Tibetans. This study attempts to investigate the genetic variants of the PPARA in Sherpa highlanders and the association with high-altitude hypoxia adaptation. Seven single-nucleotide polymorphisms (SNPs; rs135547, rs5769178, rs881740, rs4253712, rs5766741, and rs5767700 in introns and rs1800234 in exon 6) in the PPARA were genotyped in 105 Sherpa highlanders who lived in the Khumbu region (3440 m above sea level) and 111 non-Sherpa lowlanders who resided in Kathmandu (1300 m) in Nepal. By means of analyses of genetic distances, genotype distributions, allele frequencies, linkage disequilibrium, and haplotype constructions of the seven SNPs in the Sherpa highlanders versus the non-Sherpa lowlanders, it was revealed that the frequencies of minor alleles of rs4253712, rs5766741, rs5767700, and rs1800234 SNPs, as well as the frequency of haplotype constructed by the minor alleles of rs5766741–rs5767700–rs1800234, were significantly overrepresented in the Sherpa highlanders in comparison with the non-Sherpa lowlanders. The results strongly suggest that the genetic variants of the PPARA are likely to contribute to the high-altitude adaptation in Sherpa highlanders. |
format | Online Article Text |
id | pubmed-10516232 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Mary Ann Liebert, Inc., publishers |
record_format | MEDLINE/PubMed |
spelling | pubmed-105162322023-09-23 The Contribution of Genetic Variants of the Peroxisome Proliferator-Activated Receptor-Alpha Gene to High-Altitude Hypoxia Adaptation in Sherpa Highlanders Kinota, Fumiya Droma, Yunden Kobayashi, Nobumitsu Horiuchi, Toshimichi Kitaguchi, Yoshiaki Yasuo, Masanori Ota, Masao Hanaoka, Masayuki High Alt Med Biol Scientific Articles Kinota, Fumiya, Yunden Droma, Nobumitsu Kobayashi, Toshimichi Horiuchi, Yoshiaki Kitaguchi, Masanori Yasuo, Masao Ota, and Masayuki Hanaoka. The contribution of genetic variants of the gene encoding peroxisome proliferator-activated receptor-alpha gene (PPARA) to high-altitude hypoxia adaptation in Sherpa highlanders. High Alt Med Biol. 24:186–192, 2023.—Sherpa highlanders, who play invaluable roles in the exploration of Mount Everest, have exceptional tolerance to hypobaric hypoxia. Sherpa people are well known to possess the traits determined by genetic background for high-altitude adaptation. The metabolic adaptation mechanism is one of the biological ways for Sherpa highlanders in protecting them from hypoxia stress at high altitude. Studies have suggested that the gene encoding PPARA is associated with metabolic adaptation in the Himalayan population of Tibetans. This study attempts to investigate the genetic variants of the PPARA in Sherpa highlanders and the association with high-altitude hypoxia adaptation. Seven single-nucleotide polymorphisms (SNPs; rs135547, rs5769178, rs881740, rs4253712, rs5766741, and rs5767700 in introns and rs1800234 in exon 6) in the PPARA were genotyped in 105 Sherpa highlanders who lived in the Khumbu region (3440 m above sea level) and 111 non-Sherpa lowlanders who resided in Kathmandu (1300 m) in Nepal. By means of analyses of genetic distances, genotype distributions, allele frequencies, linkage disequilibrium, and haplotype constructions of the seven SNPs in the Sherpa highlanders versus the non-Sherpa lowlanders, it was revealed that the frequencies of minor alleles of rs4253712, rs5766741, rs5767700, and rs1800234 SNPs, as well as the frequency of haplotype constructed by the minor alleles of rs5766741–rs5767700–rs1800234, were significantly overrepresented in the Sherpa highlanders in comparison with the non-Sherpa lowlanders. The results strongly suggest that the genetic variants of the PPARA are likely to contribute to the high-altitude adaptation in Sherpa highlanders. Mary Ann Liebert, Inc., publishers 2023-09-01 2023-09-12 /pmc/articles/PMC10516232/ /pubmed/30475063 http://dx.doi.org/10.1089/ham.2018.0052 Text en © Fumiya Kinota et al., 2023; Published by Mary Ann Liebert, Inc. https://creativecommons.org/licenses/by/4.0/This Open Access article is distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by/4.0 (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited |
spellingShingle | Scientific Articles Kinota, Fumiya Droma, Yunden Kobayashi, Nobumitsu Horiuchi, Toshimichi Kitaguchi, Yoshiaki Yasuo, Masanori Ota, Masao Hanaoka, Masayuki The Contribution of Genetic Variants of the Peroxisome Proliferator-Activated Receptor-Alpha Gene to High-Altitude Hypoxia Adaptation in Sherpa Highlanders |
title | The Contribution of Genetic Variants of the Peroxisome Proliferator-Activated Receptor-Alpha Gene to High-Altitude Hypoxia Adaptation in Sherpa Highlanders |
title_full | The Contribution of Genetic Variants of the Peroxisome Proliferator-Activated Receptor-Alpha Gene to High-Altitude Hypoxia Adaptation in Sherpa Highlanders |
title_fullStr | The Contribution of Genetic Variants of the Peroxisome Proliferator-Activated Receptor-Alpha Gene to High-Altitude Hypoxia Adaptation in Sherpa Highlanders |
title_full_unstemmed | The Contribution of Genetic Variants of the Peroxisome Proliferator-Activated Receptor-Alpha Gene to High-Altitude Hypoxia Adaptation in Sherpa Highlanders |
title_short | The Contribution of Genetic Variants of the Peroxisome Proliferator-Activated Receptor-Alpha Gene to High-Altitude Hypoxia Adaptation in Sherpa Highlanders |
title_sort | contribution of genetic variants of the peroxisome proliferator-activated receptor-alpha gene to high-altitude hypoxia adaptation in sherpa highlanders |
topic | Scientific Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516232/ https://www.ncbi.nlm.nih.gov/pubmed/30475063 http://dx.doi.org/10.1089/ham.2018.0052 |
work_keys_str_mv | AT kinotafumiya thecontributionofgeneticvariantsoftheperoxisomeproliferatoractivatedreceptoralphagenetohighaltitudehypoxiaadaptationinsherpahighlanders AT dromayunden thecontributionofgeneticvariantsoftheperoxisomeproliferatoractivatedreceptoralphagenetohighaltitudehypoxiaadaptationinsherpahighlanders AT kobayashinobumitsu thecontributionofgeneticvariantsoftheperoxisomeproliferatoractivatedreceptoralphagenetohighaltitudehypoxiaadaptationinsherpahighlanders AT horiuchitoshimichi thecontributionofgeneticvariantsoftheperoxisomeproliferatoractivatedreceptoralphagenetohighaltitudehypoxiaadaptationinsherpahighlanders AT kitaguchiyoshiaki thecontributionofgeneticvariantsoftheperoxisomeproliferatoractivatedreceptoralphagenetohighaltitudehypoxiaadaptationinsherpahighlanders AT yasuomasanori thecontributionofgeneticvariantsoftheperoxisomeproliferatoractivatedreceptoralphagenetohighaltitudehypoxiaadaptationinsherpahighlanders AT otamasao thecontributionofgeneticvariantsoftheperoxisomeproliferatoractivatedreceptoralphagenetohighaltitudehypoxiaadaptationinsherpahighlanders AT hanaokamasayuki thecontributionofgeneticvariantsoftheperoxisomeproliferatoractivatedreceptoralphagenetohighaltitudehypoxiaadaptationinsherpahighlanders AT kinotafumiya contributionofgeneticvariantsoftheperoxisomeproliferatoractivatedreceptoralphagenetohighaltitudehypoxiaadaptationinsherpahighlanders AT dromayunden contributionofgeneticvariantsoftheperoxisomeproliferatoractivatedreceptoralphagenetohighaltitudehypoxiaadaptationinsherpahighlanders AT kobayashinobumitsu contributionofgeneticvariantsoftheperoxisomeproliferatoractivatedreceptoralphagenetohighaltitudehypoxiaadaptationinsherpahighlanders AT horiuchitoshimichi contributionofgeneticvariantsoftheperoxisomeproliferatoractivatedreceptoralphagenetohighaltitudehypoxiaadaptationinsherpahighlanders AT kitaguchiyoshiaki contributionofgeneticvariantsoftheperoxisomeproliferatoractivatedreceptoralphagenetohighaltitudehypoxiaadaptationinsherpahighlanders AT yasuomasanori contributionofgeneticvariantsoftheperoxisomeproliferatoractivatedreceptoralphagenetohighaltitudehypoxiaadaptationinsherpahighlanders AT otamasao contributionofgeneticvariantsoftheperoxisomeproliferatoractivatedreceptoralphagenetohighaltitudehypoxiaadaptationinsherpahighlanders AT hanaokamasayuki contributionofgeneticvariantsoftheperoxisomeproliferatoractivatedreceptoralphagenetohighaltitudehypoxiaadaptationinsherpahighlanders |