Cargando…
Zero-shot-capable identification of phage–host relationships with whole-genome sequence representation by contrastive learning
Accurately identifying phage–host relationships from their genome sequences is still challenging, especially for those phages and hosts with less homologous sequences. In this work, focusing on identifying the phage–host relationships at the species and genus level, we propose a contrastive learning...
Autores principales: | Zhang, Yao-zhong, Liu, Yunjie, Bai, Zeheng, Fujimoto, Kosuke, Uematsu, Satoshi, Imoto, Seiya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516345/ https://www.ncbi.nlm.nih.gov/pubmed/37466138 http://dx.doi.org/10.1093/bib/bbad239 |
Ejemplares similares
-
iAMPCN: a deep-learning approach for identifying antimicrobial peptides and their functional activities
por: Xu, Jing, et al.
Publicado: (2023) -
Identification of bacteriophage genome sequences with representation learning
por: Bai, Zeheng, et al.
Publicado: (2022) -
Subgraph extraction and graph representation learning for single cell Hi-C imputation and clustering
por: Zheng, Jiahao, et al.
Publicado: (2023) -
Computational prediction of species-specific yeast DNA replication origin via iterative feature representation
por: Manavalan, Balachandran, et al.
Publicado: (2020) -
Matching single cells across modalities with contrastive learning and optimal transport
por: Gossi, Federico, et al.
Publicado: (2023)