Cargando…
Differential variability analysis of single-cell gene expression data
The advent of single-cell RNA sequencing (scRNA-seq) technologies has enabled gene expression profiling at the single-cell resolution, thereby enabling the quantification and comparison of transcriptional variability among individual cells. Although alterations in transcriptional variability have be...
Autores principales: | Liu, Jiayi, Kreimer, Anat, Li, Wei Vivian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516347/ https://www.ncbi.nlm.nih.gov/pubmed/37598422 http://dx.doi.org/10.1093/bib/bbad294 |
Ejemplares similares
-
A Markov random field model-based approach for differentially expressed gene detection from single-cell RNA-seq data
por: Zhu, Biqing, et al.
Publicado: (2022) -
Comprehensive evaluation of methods for differential expression analysis of metatranscriptomics data
por: Cho, Hunyong, et al.
Publicado: (2023) -
Robust discovery of gene regulatory networks from single-cell gene expression data by Causal Inference Using Composition of Transactions
por: Shojaee, Abbas, et al.
Publicado: (2023) -
Benchmarking cell-type clustering methods for spatially resolved transcriptomics data
por: Cheng, Andrew, et al.
Publicado: (2022) -
Improving the performance of single-cell RNA-seq data mining based on relative expression orderings
por: Chen, Yuanyuan, et al.
Publicado: (2022)