Cargando…
Multimodal deep learning approaches for single-cell multi-omics data integration
Integrating single-cell multi-omics data is a challenging task that has led to new insights into complex cellular systems. Various computational methods have been proposed to effectively integrate these rapidly accumulating datasets, including deep learning. However, despite the proven success of de...
Autores principales: | Athaya, Tasbiraha, Ripan, Rony Chowdhury, Li, Xiaoman, Hu, Haiyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516349/ https://www.ncbi.nlm.nih.gov/pubmed/37651607 http://dx.doi.org/10.1093/bib/bbad313 |
Ejemplares similares
-
An Estimation Method of Continuous Non-Invasive Arterial Blood Pressure Waveform Using Photoplethysmography: A U-Net Architecture-Based Approach
por: Athaya, Tasbiraha, et al.
Publicado: (2021) -
Clustering of single-cell multi-omics data with a multimodal deep learning method
por: Lin, Xiang, et al.
Publicado: (2022) -
A Review of Noninvasive Methodologies to Estimate the Blood Pressure Waveform
por: Athaya, Tasbiraha, et al.
Publicado: (2022) -
Real-Time Cuffless Continuous Blood Pressure Estimation Using 1D Squeeze U-Net Model: A Progress toward mHealth
por: Athaya, Tasbiraha, et al.
Publicado: (2022) -
Ensemble deep learning of embeddings for clustering multimodal single-cell omics data
por: Yu, Lijia, et al.
Publicado: (2023)