Cargando…
scDeepInsight: a supervised cell-type identification method for scRNA-seq data with deep learning
Annotation of cell-types is a critical step in the analysis of single-cell RNA sequencing (scRNA-seq) data that allows the study of heterogeneity across multiple cell populations. Currently, this is most commonly done using unsupervised clustering algorithms, which project single-cell expression dat...
Autores principales: | Jia, Shangru, Lysenko, Artem, Boroevich, Keith A, Sharma, Alok, Tsunoda, Tatsuhiko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516353/ https://www.ncbi.nlm.nih.gov/pubmed/37523217 http://dx.doi.org/10.1093/bib/bbad266 |
Ejemplares similares
-
DeepFeature: feature selection in nonimage data using convolutional neural network
por: Sharma, Alok, et al.
Publicado: (2021) -
GOWDL: gene ontology-driven wide and deep learning model for cell typing of scRNA-seq data
por: Fiannaca, Antonino, et al.
Publicado: (2023) -
Self-supervised deep clustering of single-cell RNA-seq data to hierarchically detect rare cell populations
por: Lei, Tianyuan, et al.
Publicado: (2023) -
DeepInsight-3D architecture for anti-cancer drug response prediction with deep-learning on multi-omics
por: Sharma, Alok, et al.
Publicado: (2023) -
Self-supervised contrastive learning for integrative single cell RNA-seq data analysis
por: Han, Wenkai, et al.
Publicado: (2022)